
1

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

1.1 The concept of computer programming

Before we begin Visual Basic 6 programming, let us understand some basic
concepts of programming. According to Webopedia, a computer program is an
organized list of instructions that, when executed, causes the computer to behave
in a predetermined manner. Without programs, computers are useless. Therefore,
programming means designing or creating a set of instructions to ask the
computer to carry out certain jobs which normally are very much faster than
human beings can do.

 A lot of people think that computer CPU is a very intelligent thing, which in actual fact it is
a dumb and inanimate object that can do nothing without human assistant. The
microchips of a CPU can only understand two distinct electrical states, namely, the on
and off states, or 0 and 1 codes in the binary system. So, the CPU only understands a
combinations of 0 and 1 codes, a language which we called machine language. Machine
language is extremely difficult to learn and it is not for us laymen to master it easily.
Fortunately , we have many smart programmers who wrote interpreters and compilers
that can translate human language-like programs such as BASIC into machine language
so that the computer can carry out the instructions entered by the users. Machine
language is known as the primitive language while Interpreters and compilers like Visual
Basic are called high-level language. Some of the high level computer languages beside
Visual Basic are Fortran, Cobol, Java, C, C++, Turbo Pascal, and etc .

1.2 What is Visual Basic?

VISUAL BASIC is a high level programming language which was evolved from the
earlier DOS version called BASIC. BASIC means Beginners' All-purpose Symbolic
Instruction Code. It is a very easy programming language to learn. The codes look
a lot like English Language. Different software companies produced different
version of BASIC, such as Microsoft QBASIC, QUICKBASIC, GWBASIC ,IBM BASICA
and so on. However, it seems people only use Microsoft Visual Basic today, as it is
a well developed programming language and supporting resources are available
everywhere. Now, there are many versions of VB exist in the market, the most
popular one and still widely used by many VB programmers is none other than
Visual Basic 6. We also have VB.net, VB2005 and the latest VB2008, which is a
fully object oriented programming (OOP) language. It is more powerful than VB6
but looks more complicated to master. If you wish to learn VB2008, click on the
VB2008 Tutorial.

VISUAL BASIC is a VISUAL and events driven Programming Language. These are
the main divergence from the old BASIC. In BASIC, programming is done in a text-
only environment and the program is executed sequentially. In VB, programming
is done in a graphical environment. In the old BASIC, you have to write program
codes for each graphical object you wish to display it on screen, including its
position and its color. However, In VB , you just need to drag and drop any
graphical object anywhere on the form, and you can change its color any time
using the properties windows.

On the other hand, because users may click on a certain object randomly, so each
object has to be programmed independently to be able to response to those

2

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

actions (events). Therefore, a VB Program is made up of many subprograms, each
has its own program codes, and each can be executed independently and at the
same time each can be linked together in one way or another.

1.3 What programs can you create with
Visual Basic 6?

With VB 6, you can create any program depending on your objective. For example,
if you are a college or university lecturer, you can create educational programs to
teach business, economics, engineering, computer science, accountancy , financial
management, information system and more to make teaching more effective and
interesting. If you are in business, you can also create business programs such as
inventory management system , point-of-sale system, payroll system, financial
program as well as accounting program to help manage your business and
increase productivity. For those of you who like games and working as games
programmer, you can create those programs as well. Indeed, there is no limit to
what program you can create ! There are many such programs in this tutorial, so
you must spend more time on the tutorial in order to learn how to create those
programs. If you wish to see some of the sample programs, you can take a look at
the link below:

 VB Sample Programs

1.4 The Visual Basic 6 Integrated
Development Environment

Before you can program in VB 6, you need to install Visual Basic 6 in your
computer. If you do not own a copy of Visual Basic 6 software yet , you can
purchase it from Amazon.com by clicking the link below:

 Microsoft Visual Basic 6.0 Professional

Basically any present computer system should be able to run the program, be it a Intel
Pentium II, Intel Pentium III, Intel Pentium IV or even AMD machines, Visual Basic 6 can
run without any problem. It might not be true for VB2008, older machines might not be
able to run VB2008 as it takes up much more resources, therefore I still prefer VB 6 as it
is light and easy to program. It is still very useful and powerful, and I am happy to know
that Microsoft Windows Vista can support VB 6. However, if you prefer to learn VB 2008,
you can refer VB 2008 Tutorial.

On start up, Visual Basic 6.0 will display the following dialog box as shown in figure 1.1.
You can choose to either start a new project, open an existing project or select a list of
recently opened programs. A project is a collection of files that make up your application.
There are various types of applications that we could create, however, we shall
concentrate on creating Standard EXE programs (EXE means executable program). Now,
click on the Standard EXE icon to go into the actual Visual Basic 6 programming

3

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

environment.

Building Visual Basic Applications

2.1 Creating Your First Application

 In this section, we will not go into the technical aspects of Visual Basic

programming yet, what you need to do is just try out the examples below to see

how does in VB program look like:

Example 2.1.1 is a simple program. First of all, you have to launch Microsoft Visual
Basic 6. Normally, a default form with the name Form1 will be available for you to
start your new project. Now, double click on Form1, the source code window for
Form1 as shown in figure 2.1 will appear. The top of the source code window
consists of a list of objects and their associated events or procedures. In figure
2.1, the object displayed is Form and the associated procedure is Load.

Figure 2.1 Source Code Window

When you click on the object box, the drop-down list will display a list of objects
you have inserted into your form as shown in figure 2.2. Here, you can see a form
with the name Form1, a command button with the name Command1, a Label with
the name Label1 and a Picture Box with the name Picture1. Similarly, when you
click on the procedure box, a list of procedures associated with the object will be
displayed as shown in figure 2.3. Some of the procedures associated with the
object Form1 are Activate, Click, DblClick (which means Double-Click) , DragDrop,
keyPress and more. Each object has its own set of procedures. You can always

4

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

select an object and write codes for any of its procedure in order to perform
certain tasks.

You do not have to worry about the beginning and the end statements (i.e. Private
Sub Form_Load.......End Sub.); Just key in the lines in between the above two
statements exactly as are shown here. When you press F5 to run the program, you
will be surprise that nothing shown up .In order to display the output of the
program, you have to add the Form1.show statement like in Example 2.1.1 or you
can just use Form_Activate () event procedure as shown in example 2.1.2. The
command Print does not mean printing using a printer but it means displaying the
output on the computer screen. Now, press F5 or click on the run button to run the
program and you will get the output as shown in figure 2.4.

 You can also perform arithmetic calculations as shown in example 2.1.2. VB uses

* to denote the multiplication operator and / to denote the division operator. The
output is shown in figure 2.3, where the results are arranged vertically.

Figure 2.2: List of Objects

Figure 2.3: List of Procedures

Example 2.1.1

Private Sub Form_Load ()

Form1.show

Print “Welcome to Visual Basic

Figure 2.4 : The output of example 2.1.1

5

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

tutorial”

End Sub

Example 2.1.2

Private Sub Form_Activate ()

Print 20 + 10

Print 20 - 10

Print 20 * 10

Print 20 / 10

End Sub

Figure 2.5: The output of example 2.1.2

You can also use the + or the & operator to join two or more texts (string)

together like in example 2.1.4 (a) and (b)

Example 2.1.4(a)

Private Sub

A = Tom

Example 2.1.4(b)

Private Sub

A = Tom
B = “likes"

6

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

B = “likes"
C = “to"
D = “eat"
E = “burger"
Print A + B + C + D + E

End Sub

C = “to"
D = “eat"
E = “burger"
Print A & B & C & D & E

End Sub

The Output of Example 2.1.4(a) &(b) is as shown in Figure 2.7.

2.2 Steps in Building a Visual Basic Application

Step 1 : Design the interface

Step 2 : Set properties of the controls (Objects)

Step 3 : Write the event procedures

3.1 The Control Properties

Before writing an event procedure for the control to response to a user's input, you have to

set certain properties for the control to determine its appearance and how it will work with

the event procedure. You can set the properties of the controls in the properties window or

at runtime.

 Figure 3.1 below is a typical properties window for a form. You can rename the form

7

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 3.1

 caption to any name that you like best. In the properties window, the item appears
at the top part is the object currently selected (in Figure 3.1, the object selected is
Form1). At the bottom part, the items listed in the left column represent the names
of various properties associated with the selected object while the items listed in

8

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

the right column represent the states of the properties. Properties can be set by
highlighting the items in the right column then change them by typing or selecting
the options available.

 For example, in order to change the caption, just highlight Form1 under the name Caption

and change it to other names. You may also try to alter the appearance of the form by

setting it to 3D or flat. Other things you can do are to change its foreground and

background color, change the font type and font size, enable or disable minimize and

maximize buttons and etc.

You can also change the properties at runtime to give special effects such as change of

color, shape, animation effect and so on. For example the following code will change the

form color to red every time the form is loaded. VB uses hexadecimal system to represent

the color. You can check the color codes in the properties windows which are showed up

under ForeColor and BackColor .

Private Sub Form_Load()

Form1.Show
Form1.BackColor = &H000000FF&

End Sub

Another example is to change the control Shape to a particular shape at runtime by writing

the following code. This code will change the shape to a circle at runtime. Later you will

learn how to change the shapes randomly by using the RND function.

Private Sub Form_Load()

Shape1.Shape = 3

End Sub

I would like to stress that knowing how and when to set the objects' properties is very

important as it can help you to write a good program or you may fail to write a good

program. So, I advice you to spend a lot of time playing with the objects' properties.

I am not going into the details on how to set the properties. However, I would like to stress

a few important points about setting up the properties.

• You should set the Caption Property of a control clearly so that a user knows what to

9

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

do with that command. For example, in the calculator program, all the captions of

the command buttons such as +, - , MC, MR are commonly found in an ordinary

calculator, a user should have no problem in manipulating the buttons.

• A lot of programmers like to use a meaningful name for the Name Property may be

because it is easier for them to write and read the event procedure and easier to

debug or modify the programs later. However, it is not a must to do that as long as

you label your objects clearly and use comments in the program whenever you feel

necessary. T

• One more important property is whether the control is enabled or not.

• Finally, you must also considering making the control visible or invisible at runtime,

or when should it become visible or invisible.

3.2 Handling some of the common controls

3.2.1 The Text Box

The text box is the standard control for accepting input from the user as well as to display

the output. It can handle string (text) and numeric data but not images or pictures. String

in a text box can be converted to a numeric data by using the function Val(text). The

following example illustrates a simple program that processes the input from the user.

Example 3.1

In this program, two text boxes are inserted into the form together with a few labels. The

two text boxes are used to accept inputs from the user and one of the labels will be used to

display the sum of two numbers that are entered into the two text boxes. Besides, a

command button is also programmed to calculate the sum of the two numbers using the

plus operator. The program use creates a variable sum to accept the summation of values

from text box 1 and text box 2.The procedure to calculate and to display the output on the

label is shown below. The output is shown in Figure 3.2

Private Sub Command1_Click()

‘To add the values in text box 1 and text box 2

10

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Sum = Val(Text1.Text) + Val(Text2.Text)

‘To display the answer on label 1

Label1.Caption = Sum

End Sub

Figure 3.2

3.2.2 The Label

The label is a very useful control for Visual Basic, as it is not only used to provide

instructions and guides to the users, it can also be used to display outputs. One of its most

important properties is Caption. Using the syntax label.Caption, it can display text and

numeric data . You can change its caption in the properties window and also at runtime.

Please refer to Example 3.1 and Figure 3.1 for the usage of label.

 3.2.3 The Command Button

The command button is one of the most important controls as it is used to execute

commands. It displays an illusion that the button is pressed when the user click on it. The

most common event associated with the command button is the Click event, and the syntax

for the procedure is

11

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Private Sub Command1_Click ()

Statements

End Sub

3.2.4 The Picture Box

The Picture Box is one of the controls that is used to handle graphics. You can load a picture

at design phase by clicking on the picture item in the properties window and select the

picture from the selected folder. You can also load the picture at runtime using the

LoadPicture method. For example, the statement will load the picture grape.gif into the

picture box.

Picture1.Picture=LoadPicture ("C:\VB program\Images\grape.gif")

You will learn more about the picture box in future lessons. The image in the picture box is

not resizable.

 3.2.5 The Image Box

The Image Box is another control that handles images and pictures. It functions almost

identically to the picture box. However, there is one major difference, the image in an

Image Box is stretchable, which means it can be resized. This feature is not available in the

Picture Box. Similar to the Picture Box, it can also use the LoadPicture method to load the

picture. For example, the statement loads the picture grape.gif into the image box.

Image1.Picture=LoadPicture ("C:\VB program\Images\grape.gif")

 3.2.6 The List Box

The function of the List Box is to present a list of items where the user can click and select

the items from the list. In order to add items to the list, we can use the AddItem method.

For example, if you wish to add a number of items to list box 1, you can key in the following

statements

Example 3.2

12

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Private Sub Form_Load ()

List1.AddItem “Lesson1”
List1.AddItem “Lesson2”
List1.AddItem “Lesson3”
List1.AddItem “Lesson4”

End Sub

The items in the list box can be identified by the ListIndex property, the value of the

ListIndex for the first item is 0, the second item has a ListIndex 1, and the second item has

a ListIndex 2 and so on

3.2.7 The Combo Box

The function of the Combo Box is also to present a list of items where the user can click and

select the items from the list. However, the user needs to click on the small arrowhead on

the right of the combo box to see the items which are presented in a drop-down list. In

order to add items to the list, you can also use the AddItem method. For example, if you

wish to add a number of items to Combo box 1, you can key in the following statements

Example 3.3

Private Sub Form_Load ()

Combo1.AddItem “Item1”
Combo1.AddItem “Item2”
Combo1.AddItem “Item3”
Combo1.AddItem “Item4”

End Sub

3.2.8 The Check Box

The Check Box control lets the user selects or unselects an option. When the Check Box is

checked, its value is set to 1 and when it is unchecked, the value is set to 0. You can

include the statements Check1.Value=1 to mark the Check Box and Check1.Value=0 to

unmark the Check Box, as well as use them to initiate certain actions. For example, the

program will change the background color of the form to red when the check box is

13

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

unchecked and it will change to blue when the check box is checked. You will learn about

the conditional statement If….Then….Elesif in later lesson. VbRed and vbBlue are color

constants and BackColor is the background color property of the form.

Example 3.4

Private Sub Command1_Click()

If Check1.Value = 1 And Check2.Value = 0 Then

MsgBox "Apple is selected"

ElseIf Check2.Value = 1 And Check1.Value = 0 Then

MsgBox "Orange is selected"

Else

MsgBox "All are selected"

End If

End Sub

3.2.9 The Option Box

 The Option Box control also lets the user selects one of the choices. However, two or more

Option Boxes must work together because as one of the Option Boxes is selected, the other

Option Boxes will be unselected. In fact, only one Option Box can be selected at one time.

When an option box is selected, its value is set to “True” and when it is unselected; its value

is set to “False”. In the following example, the shape control is placed in the form together

with six Option Boxes. When the user clicks on different option boxes, different shapes will

appear. The values of the shape control are 0, 1, and 2,3,4,5 which will make it appear as a

rectangle, a square, an oval shape, a rounded rectangle and a rounded square respectively.

Example 3.5

Private Sub Option1_Click ()

Shape1.Shape = 0

End Sub

Private Sub Option2_Click()

14

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Shape1.Shape = 1

End Sub

Private Sub Option3_Click()

Shape1.Shape = 2

End Sub

Private Sub Option4_Click()

Shape1.Shape = 3

End Sub

Private Sub Option5_Click()

Shape1.Shape = 4

End Sub

Private Sub Option6_Click()

Shape1.Shape = 5

End Sub

 3.2.10 The Drive List Box

The Drive ListBox is for displaying a list of drives available in your computer. When you

place this control into the form and run the program, you will be able to select different

drives from your computer as shown in Figure 3.3

Figure 3.3 The Drive List Box

15

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 3.2.11 The Directory List Box

The Directory List Box is for displaying the list of directories or folders in a selected drive.

When you place this control into the form and run the program, you will be able to select

different directories from a selected drive in your computer as shown in Figure 3.4

Figure 3.4 The Directory List Box

3.2.12 The File List Box

The File List Box is for displaying the list of files in a selected directory or folder. When you

place this control into the form and run the program, you will be able to shown the list of

files in a selected directory as shown in Figure 3.5

16

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

You can coordinate the Drive List Box, the Directory List Box and the File List Box to search

for the files you want. The procedure will be discussed in later lessons.

Lesson 4 : Writing the Code
In lesson 2, you have learned how to enter the program code and run the sample VB
programs but without much understanding about the logics of VB programming. Now, let’s
get down to learning some basic rules about writing the VB program code.

 Each control or object in VB can usually run many kinds of events or procedures; these

events are listed in the dropdown list in the code window that is displayed when you

double-click on an object and click on the procedures’ box(refer to Figure 2.3). Among

the events are loading a form, clicking of a command button, pressing a key on the

keyboard or dragging an object and more. For each event, you need to write an event

procedure so that it can perform an action or a series of actions

To start writing an event procedure, you need to double-click an object. For example, if you

want to write an event procedure when a user clicks a command button, you double-

click on the command button and an event procedure will appear as shown in Figure 2.1. It

takes the following format:

Private Sub Command1_Click

(Key in your program code here)

End Sub

You then need to key-in the procedure in the space between Private Sub

Command1_Click............. End Sub. Sub actually stands for sub procedure that made up a

part of all the procedures in a program. The program code is made up of a number of

statements that set certain properties or trigger some actions. The syntax of Visual Basic’s

program code is almost like the normal English language though not exactly the same, so it

is very easy to learn.

The syntax to set the property of an object or to pass certain value to it is :

 Object.Property

where Object and Property is separated by a period (or dot). For example, the statement

Form1.Show means to show the form with the name Form1, Iabel1.Visible=true means

17

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

label1 is set to be visible, Text1.text=”VB” is to assign the text VB to the text box with

the name Text1, Text2.text=100 is to pass a value of 100 to the text box with the name

text2, Timer1.Enabled=False is to disable the timer with the name Timer1 and so on.

Let’s examine a few examples below:

Example 4.1

Private Sub Command1_click

Label1.Visible=false

Label2.Visible=True

Text1.Text=”You are correct!”

End sub

Example 4.2

Private Sub Command1_click

Label1.Caption=” Welcome”

Image1.visible=true

End sub

Example 4.3

Private Sub Command1_click

Pictuire1.Show=true

Timer1.Enabled=True

Lable1.Caption=”Start Counting

End sub

18

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

In Example 4.1, clicking on the command button will make label1 become invisible and

label2 become visible; and the text” You are correct” will appear in TextBox1. In example

4.2, clicking on the command button will make the caption label1 change to “Welcome” and

Image1 will become visible. In example 4.3 , clicking on the command button will make

Picture1 show up, timer starts running and the caption of label1 change to “Start

Counting”.

 Syntaxes that do not involve setting of properties are also English-like, some of the

commands are Print, If…Then….Else….End If, For…Next, Select Case…..End Select ,

End and Exit Sub. For example, Print “ Visual Basic” is to display the text Visual Basic

on screen and End is to end the program. Other commands will be explained in details in

the coming lessons.

Program code that involve calculations is very easy to write, you need to write them almost

like you do in mathematics. However, in order to write an event procedure that involves

calculations, you need to know the basic arithmetic operators in VB as they are not exactly

the same as the normal operators we use, except for + and - . For multiplication, we use *,

for division we use /, for raising a number x to the power of n, we use x ^n and for square

root, we use Sqr(x). VB offers many more advanced mathematical functions such as Sin,

Cos, Tan and Log, they will be discussed in lesson 10. There are also two important

functions that are related to arithmetic operations, i.e. the functions Val and Str$ where Val

is to convert text entered into a textbox to numerical value and Str$ is to display a

numerical value in a textbox as a string (text). While the function Str$ is as important as

VB can display a numeric values as string implicitly, failure to use Val will results in wrong

calculation. Let’s examine example 4.4 and example 4.5.

19

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Example 4.4

Private Sub Form_Activate()

 Text3.text=text1.text+text2.text

End Sub

 Example 4.5

Private Sub Form_Activate()

 Text3.text=val(text1.text)+val(text2.text)

End Sub

When you run the program in example 4.4 and enter 12 in textbox1 and 3 in textbox2 will

give you a result of 123, which is wrong. It is because VB treat the numbers as string and

so it just joins up the two strings. On the other hand, running exampled 4.5 will give you

the correct result, i.e., 15.

Lesson 5: Managing Visual Basic Data

There are many types of data that we come across in our daily life. For example, we need to

handle data such as names, addresses, money, date, stock quotes, statistics and more

everyday. Similarly in Visual Basic, we have to deal with all sorts of of data, some can be

mathematically calculated while some are in the form of text or other forms. VB divides data

into different types so that it is easier to manage when we need to write the code involving

those data.

5.1 Visual Basic Data Types

Visual Basic classifies the information mentioned above into two major data types, they are
the numeric data types and the non-numeric data types.

5.1.1 Numeric Data Types

Numeric data types are types of data that consist of numbers, which can be computed

mathematically with various standard operators such as add, minus, multiply, divide and

more. Examples of numeric data types are examination marks, height, weight, the number

of students in a class, share values, price of goods, monthly bills, fees and others. In Visual

Basic, numeric data are divided into 7 types, depending on the range of values they can

store. Calculations that only involve round figures or data that does not need precision can

use Integer or Long integer in the computation. Programs that require high precision

calculation need to use Single and Double decision data types, they are also called floating

20

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

point numbers. For currency calculation , you can use the currency data types. Lastly, if

even more precision is required to perform calculations that involve a many decimal points,

we can use the decimal data types. These data types summarized in Table 5.1

Table 5.1: Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes
-3.402823E+38 to -1.401298E-45 for negative values
1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes

-1.79769313486232e+308 to -4.94065645841247E-324 for
negative values
4.94065645841247E-324 to 1.79769313486232e+308 for
positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes
+/- 79,228,162,514,264,337,593,543,950,335 if no decimal is
use
+/- 7.9228162514264337593543950335 (28 decimal places).

5.1.2 Non-numeric Data Types

Nonnumeric data types are data that cannot be manipulated mathematically using standard
arithmetic operators. The non-numeric data comprises text or string data types, the Date
data types, the Boolean data types that store only two values (true or false), Object data
type and Variant data type .They are summarized in Table 5.2

 Table 5.2: Nonnumeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length)
Length + 10
bytes

0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

5.1.3 Suffixes for Literals

21

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Literals are values that you assign to data. In some cases, we need to add a suffix behind a
literal so that VB can handle the calculation more accurately. For example, we can use
num=1.3089# for a Double type data. Some of the suffixes are displayed in Table 5.3.

Table 5.3

Suffix Data Type

& Long

! Single

Double

@ Currency

In addition, we need to enclose string literals within two quotations and date and time
literals within two # sign. Strings can contain any characters, including numbers. The
following are few examples:

memberName="Turban, John."
TelNumber="1800-900-888-777"
LastDay=#31-Dec-00#
ExpTime=#12:00 am#

5.2 Managing Variables

Variables are like mail boxes in the post office. The contents of the variables changes every
now and then, just like the mail boxes. In term of VB, variables are areas allocated by the
computer memory to hold data. Like the mail boxes, each variable must be given a name.
To name a variable in Visual Basic, you have to follow a set of rules.

5.2.1 Variable Names

The following are the rules when naming the variables in Visual Basic

• It must be less than 255 characters
• No spacing is allowed

• It must not begin with a number
• Period is not permitted

Examples of valid and invalid variable names are displayed in Table 5.4

 Table 5.4

Valid Name Invalid Name

My_Car My.Car

ThisYear 1NewBoy

Long_Name_Can_beUSE
He&HisFather
*& is not acceptable

22

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

5.2.2 Declaring Variables

In Visual Basic, one needs to declare the variables before using them by assigning names
and data types. They are normally declared in the general section of the codes' windows
using the Dim statement.
The format is as follows:

Dim Variable Name As Data Type

Example 5.1

Dim password As String
Dim yourName As String
Dim firstnum As Integer
Dim secondnum As Integer
Dim total As Integer
Dim doDate As Date

You may also combine them in one line , separating each variable with a comma, as follows:

Dim password As String, yourName As String, firstnum As Integer,.............

If data type is not specified, VB will automatically declare the variable as a Variant.
For string declaration, there are two possible formats, one for the variable-length string and
another for the fixed-length string. For the variable-length string, just use the same format
as example 5.1 above. However, for the fixed-length string, you have to use the format as
shown below:

Dim VariableName as String * n, where n defines the number of characters the string can
hold.

Example 5.2:

Dim yourName as String * 10

yourName can holds no more than 10 Characters.

5.3 Constants

Constants are different from variables in the sense that their values do not change during
the running of the program.

5.3.1 Declaring a Constant

The format to declare a constant is

Const Constant Name As Data Type = Value

Example 5.3

23

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Const Pi As Single=3.142

Const Temp As Single=37

Const Score As Single=100

Lesson 6: Working with Variables

6.1 Assigning Values to Variables

After declaring various variables using the Dim statements, we can assign values to those

variables. The general format of an assignment is

Variable=Expression

The variable can be a declared variable or a control property value. The expression could be

a mathematical expression, a number, a string, a Boolean value (true or false) and more.

The following are some examples:

firstNumber=100

secondNumber=firstNumber-99

userName="John Lyan"

userpass.Text = password

Label1.Visible = True

Command1.Visible = false

Label4.Caption = textbox1.Text

ThirdNumber = Val(usernum1.Text)

total = firstNumber + secondNumber+ThirdNumber

6.2 Operators in Visual Basic

To compute inputs from users and to generate results, we need to use various mathematical

operators. In Visual Basic, except for + and -, the symbols for the operators are different

from normal mathematical operators, as shown in Table 6.1.

Table 6.1: Arithmetic Operators

Operator Mathematical Example

24

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

function

^ Exponential 2^4=16

* Multiplication 4*3=12, (5*6))2=60

/ Division 12/4=3

Mod

Modulus(return the

remainder from an

integer division)

15 Mod 4=3 255 mod

10=5

\

Integer

Division(discards

the decimal places)

19\4=4

+ or &
String

concatenation

"Visual"&"Basic"="Visual

Basic"

Example 6.1

Dim firstName As String

Dim secondName As String

Dim yourName As String

 Private Sub Command1_Click()

firstName = Text1.Text

secondName = Text2.Text

yourName = secondName +

" " + firstName

Example 6.2

Dim number1, number2, number3 as Integer

Dim total, average as variant

Private sub Form_Click

number1=val(Text1.Text)

number2=val(Text2.Text)

number3= val(Text3.Text)

Total=number1+number2+number3

Average=Total/5

Label1.Caption=Total

25

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 Label1.Caption = yourName

End Sub

In this example, three variables are

declared as string. For variables

firstName and secondName will

receive their data from the user’s

input into textbox1 and textbox2,

and the variable yourName will be

assigned the data by combining the

first two variables. Finally,

yourName is displayed on Label1.

Label2.Caption=Average

End Sub

In the example above, three variables are declared as

integer and two variables are declared as variant.

Variant means the variable can hold any data type. The

program computes the total and average of the three

numbers that are entered into three text boxes.

Lesson 7 : Controlling Program Flow

In previous lessons, we have learned how to create Visual Basic code that can accept input

from the user and display the output without controlling the program flow. In this chapter,

you will learn how to crreate VB code that can make decision when it process input from

the user, and control the program flow in the process. Decision making process is an

important part of programming because it can help to solve practical problems intelligently

so that it can provide useful output or feedback to the user. For example, we can write a

program that can ask the computer to perform certain task until a certain condition is met.

7.1 Conditional Operators

To control the VB program flow, we can use various conditional operators. Basically, they
resemble mathematical operators. Conditional operators are very powerful tools, they let
the VB program compare data values and then decide what action to take, whether to
execute a program or terminate the program and more. These operators are shown in Table
7.1.

7.2 Logical Operators

In addition to conditional operators, there are a few logical operators which offer added
power to the VB programs. There are shown in Table 7.2.

Table 7.1: Conditional Operators Table 7.2:Logical Operators

Operator Meaning

26

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Operator
Meaning

=
Equal to

>
More than

<
Less Than

>=
More than and equal

<=
Less than and equal

<>
Not Equal to

And Both sides must be true

or
One side or other must be
true

Xor
One side or other must be
true but not both

Not Negates truth

* You can also compare strings with the above operators. However, there are certain rules
to follows: Upper case letters are less than lowercase letters, "A"<"B"<"C"<"D".......<"Z"
and number are less than letters.

7.3 Using If.....Then.....Else Statements with Operators

To effectively control the VB program flow, we shall use If...Then...Else statement together
with the conditional operators and logical operators.
The general format for the if...then...else statement is

If conditions Then

VB expressions

Else

VB expressions

End If

* any If..Then..Else statement must end with End If. Sometime it is not necessary to use
Else.

Example:

 Private Sub OK_Click()

 firstnum=Val(usernum1.Text)

 secondnum=Val(usernum2.Text)

 If total=firstnum+secondnum And Val(sum.Text)<>0 Then

27

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 correct.Visible = True
 wrong.Visible = False
 Else
 correct.Visible = False
 wrong.Visible = True
 End If

 End Sub

Lesson 8 : Select Case....End select Control

Structure

In the previous lesson, we have learned how to control the program flow using the

If...ElseIf control structure. In this chapter, you will learn another way to control the

program flow, that is, the Select Case control structure. However, the Select Case control

structure is slightly different from the If....ElseIf control structure . The difference is that the

Select Case control structure basically only make decision on one expression or dimension

(for example the examination grade) while the If ...ElseIf statement control structure may

evaluate only one expression, each If....ElseIf statement may also compute entirely

different dimensions. Select Case is preferred when there exist many different conditions

because using If...Then..ElseIf statements might become too messy.

The format of the Select Case control structure is show below:

Select Case expression

 Case value1
 Block of one or more VB statements
 Case value2
 Block of one or more VB Statements
 Case value3
 .
 .
 Case Else
 Block of one or more VB Statements

End Select

Example 8.1

Dim grade As String

Private Sub Compute_Click()

grade=txtgrade.Text

Select Case grade

28

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 Case "A"
 result.Caption="High Distinction"

 Case "A-"
 result.Caption="Distinction"

 Case "B"
 result.Caption="Credit"

 Case "C"
 result.Caption="Pass"

 Case Else
 result.Caption="Fail"

 End Select

End Sub

Example 8.2

Dim mark As Single

Private Sub Compute_Click()
'Examination Marks
 mark = mrk.Text

Select Case mark
 Case Is >= 85

 comment.Caption = "Excellence"
Case Is >= 70

 comment.Caption = "Good"

Case Is >= 60
 comment.Caption = "Above Average"

Case Is >= 50
comment.Caption = "Average"

Case Else
comment.Caption = "Need to work harder"

End Select

29

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Example 8.3

Example 8.2 could be rewritten as follows:

Dim mark As Single

Private Sub Compute_Click()

'Examination Marks
 mark = mrk.Text

Select Case mark
 Case 0 to 49

 comment.Caption = "Need to work harder"

Case 50 to 59

 comment.Caption = "Average"

Case 60 to 69
 comment.Caption = "Above Average"

Case 70 to 84
comment.Caption = "Good"

Case Else
comment.Caption = "Excellence"

End Select

End Sub

Lesson 9: Looping

Visual Basic allows a procedure to be repeated many times as long as the processor until a
condition or a set of conditions is fulfilled. This is generally called looping . Looping is a very
useful feature of Visual Basic because it makes repetitive works easier. There are two kinds of loops in
Visual Basic, the Do...Loop and the For.......Next loop

30

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

9.1 Do Loop

The formats are

a) Do While condition
 Block of one or more VB statements
 Loop

b) Do
 Block of one or more VB statements
 Loop While condition

c) Do Until condition
 Block of one or more VB statements
 Loop

d) Do
 Block of one or more VB statements
 Loop Until condition

9.2 Exiting the Loop

Sometime we need exit to exit a loop prematurely because of a certain condition is fulfilled.
The syntax to use is known as Exit Do. You can examine Example 9.2 for its usage.

9.3 For....Next Loop

The format is:

For counter=startNumber to endNumber (Step increment)
 One or more VB statements
Next

Please refer to example 9.3a,9.3b and 9.3 c for its usage.

Sometimes the user might want to get out from the loop before the whole repetitive process
is executed, the command to use is Exit For. To exit a For….Next Loop, you can place the
Exit For statement within the loop; and it is normally used together with the If…..Then…
statement. Let’s examine example 9.3 d.

Example 9.1

 Do while counter <=1000
 num.Text=counter
 counter =counter+1
 Loop

31

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

* The above example will keep on adding until counter >1000.
The above example can be rewritten as
 Do
 num.Text=counter
 counter=counter+1
 Loop until counter>1000

Example 9.2

Dim sum, n As Integer
 Private Sub Form_Activate()
List1.AddItem "n" & vbTab & "sum"
Do
 n = n + 1
 Sum = Sum + n

 List1.AddItem n & vbTab & Sum
 If n = 100 Then
 Exit Do
 End If
 Loop

End Sub

Explanation

In the above example, we compute the summation of 1+2+3+4+……+100. In the

design stage, you need to insert a ListBox into the form for displaying the output,

named List1. The program uses the AddItem method to populate the ListBox. The
statement List1.AddItem "n" & vbTab & "sum" will display the headings in the

ListBox, where it uses the vbTab function to create a space between the headings n
and sum.

Example 9.3 a

For counter=1 to 10
display.Text=counter
 Next

Example 9.3 b

For counter=1 to 1000 step 10
counter=counter+1
 Next

Example 9.3 c
 For counter=1000 to 5 step -5
 counter=counter-10
 Next
*Notice that increment can be negative

Example 9.3 d

Private Sub Form_Activate()
For n=1 to 10
If n>6 then
Exit For
End If

32

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Else
Print n
End If

End Sub

Lesson 10: Introduction to VB Built-in

Functions

A function is similar to a normal procedure but the main purpose of the function is to accept
a certain input from the user and return a value which is passed on to the main program to
finish the execution. There are two types of functions, the built-in functions (or internal
functions) and the functions created by the programmers.

The general format of a function is

 FunctionName (arguments)

 The arguments are values that are passed on to the function.

In this lesson, we are going to learn two very basic but useful internal functions of Visual

basic , i.e. the MsgBox() and InputBox () functions.

33

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

10.1 MsgBox () Function

The objective of MsgBox is to produce a pop-up message box and prompt the user to click on
a command button before he /she can continues. This format is as follows:

 yourMsg=MsgBox(Prompt, Style Value, Title)

 The first argument, Prompt, will display the message in the message box. The Style Value
will determine what type of command buttons appear on the message box, please refer
Table 10.1 for types of command button displayed. The Title argument will display the title of
the message board.

Table 10.1: Style Values

Style Value
Named Constant Buttons Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

We can use named constant in place of integers for the second argument to make the
programs more readable. In fact, VB6 will automatically shows up a list of names constant
where you can select one of them.

 Example: yourMsg=MsgBox("Click OK to Proceed", 1, "Startup Menu")

 and yourMsg=Msg("Click OK to Proceed". vbOkCancel,"Startup Menu")

are the same.

 yourMsg is a variable that holds values that are returned by the MsgBox () function. The
values are determined by the type of buttons being clicked by the users. It has to be
declared as Integer data type in the procedure or in the general declaration section. Table

34

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

10.2 shows the values, the corresponding named constant and buttons.

Table 10.2 : Return Values and Command Buttons

 Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Example 10.1

i. The Interface:

 You draw three command buttons and a label
as shown in Figure 10.1

Figure 10.1

ii. The procedure for the test button:

Private Sub Test_Click()
Dim testmsg As Integer
testmsg = MsgBox("Click to test", 1, "Test
message")
If testmsg = 1 Then
Display.Caption = "Testing Successful"
Else
Display.Caption = "Testing fail"
End If

End Sub

When a user click on the test button, the
image like the one shown in Figure 10.2
will appear. As the user click on the OK
button, the message "Testing successful"
will be displayed and when he/she clicks on
the Cancel button, the message "Testing
fail" will be displayed.

Figure 10.2

35

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

To make the message box looks more

sophisticated, you can add an icon besides the

message. There are four types of icons available

in VB as shown in Table 10.3

Table 10.3

Value
Named

Constant Icon

16 vbCritical

32 vbQuestion

48 vbExclamation

64 vbInformation

Example 10.2

You draw the same Interface as in example
10.1 but modify the codes as follows:

Private Sub test2_Click()

Dim testMsg2 As Integer
testMsg2 = MsgBox("Click to Test",
vbYesNoCancel + vbExclamation, "Test
Message")
If testMsg2 = 6 Then
display2.Caption = "Testing successful"
ElseIf testMsg2 = 7 Then
display2.Caption = "Are you sure?"
Else
display2.Caption = "Testing fail"
End If

End Sub

In this example, the following message box
will be displayed:

Figure 10.3

10.2 The InputBox() Function

36

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

An InputBox() function will display a

message box where the user can enter a

value or a message in the form of text.

The format is

myMessage=InputBox(Prompt, Title,
default_text, x-position, y-position)

myMessage is a variant data type but
typically it is declared as string, which
accept the message input by the users.
The arguments are explained as follows:

• Prompt - The message
displayed normally as a question
asked.

• Title - The title of the Input
Box.

• default-text - The default text that
appears in the input field where
users can use it as his intended
input or he may change to the
message he wish to key in.

• x-position and y-position - the
position or the coordinate of the
input box.

Example 10.3

i. The Interface

Figure 10.4

ii. The procedure for the OK button

Private Sub OK_Click()

Dim userMsg As String
userMsg = InputBox("What is your message?",
"Message Entry Form", "Enter your messge
here", 500, 700)
If userMsg <> "" Then
message.Caption = userMsg
Else
message.Caption = "No Message"
End If

End Sub

When a user click the OK button, the input box
as shown in Figure 10.5 will appear. After user
entering the message and click OK, the
message will be displayed on the caption, if he
click Cancel, "No message" will be displayed.

37

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 11: Mathematical Functions

The mathematical functions are very useful and important in programming because very

often we need to deal with mathematical concepts in programming such as chance and

probability, variables, mathematical logics, calculations, coordinates, time intervals and etc.

The common mathematical functions in Visual Basic are Rnd, Sqr, Int, Abs, Exp, Log, Sin,

Cos, Tan , Atn, Fix and Round.

(i) Rnd is very useful when we deal with the concept of chance and probability. The Rnd

function returns a random value between 0 and 1. In Example 1. When you run the

program, you will get an output of 10 random numbers between 0 and 1. Randomize Timer

is a vital statement here as it will randomize the process.

 Example 1:

 Private Sub Form_Activate

Randomize Timer

For x=1 to 10

Print Rnd

Next x

End Sub

The Output for example 1 is shown below:

38

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Random numbers in its original form are not very useful in programming until we convert

them to integers. For example, if we need to obtain a random output of 6 random integers

ranging from 1 to 6, which make the program behave as a virtual die, we need to convert

the random numbers using the format Int(Rnd*6)+1. Let’s study the following example:

In this example, Int(Rnd*6) will generate a random integer between 0 and 5 because the

function Int truncates the decimal part of the random number and returns an integer. After

adding 1, you will get a random number between 1 and 6 every time you click the command

button. For example, let say the random number generated is 0.98, after multiplying it by

6, it becomes 5.88, and using the integer function Int(5.88) will convert the number to 5;

and after adding 1 you will get 6.

In this example, you place a command button and change its caption to ‘roll die’. You also

need to insert a label into the form and clear its caption at the designing phase and make its

font bigger and bold. Then set the border value to 1 so that it displays a border; and after

that set the alignment to center. The statement Label1.Caption=Num means the integer

generated will be displayed as the caption of the label.

Example 2:

 Dim num as integer

Private Sub Command1_Click ()

Randomize Timer

Num=Int(Rnd*6)+1

Label1.Caption=Num

End Sub

Now, run the program and then click on the roll die button, you will get an output like the

figure below:

39

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The Numeric Functions

The numeric functions are Int, Sqr, Abs, Exp, Fix, Round and Log.

a) Int is the function that converts a number into an integer by truncating its decimal part

and the resulting integer is the largest integer that is smaller than the number. For

example, Int(2.4)=2, Int(4.8)=4, Int(-4.6)= -5, Int(0.032)=0 and so on.

b) Sqr is the function that computes the square root of a number. For example, Sqr(4)=2,

Sqr(9)=2 and etc.

c) Abs is the function that returns the absolute value of a number. So Abs(-8) = 8 and

Abs(8)= 8.

d) Exp of a number x is the value of ex. For example, Exp(1)=e1 = 2.7182818284590

e) Fix and Int are the same if the number is a positive number as both truncate the

decimal part of the number and return an integer. However, when the number is negative,

it will return the smallest integer that is larger than the number. For example, Fix(-6.34)= -

6 while Int(-6.34)=-7.

f) Round is the function that rounds up a number to a certain number of decimal places.

The Format is Round (n, m) which means to round a number n to m decimal places. For

example, Round (7.2567, 2) =7.26

g) Log is the function that returns the natural Logarithm of a number. For example,

Log 10= 2.302585

40

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Example 3

This example computes the values of Int(x), Fix(x) and Round(x,n) in a table form. It uses

the Do Loop statement and the Rnd function to generate 10 numbers. The statement x =

Round (Rnd * 7, 7) rounds a random number between 0 and 7 to 7 decimal places. Using

commas in between items will create spaces between them and hence a table of values can

be created. The program and output are shown below

 Private Sub Form_Activate ()

n = 1

Print " n", " x", "Int(x)", "Fix(x)", "Round(x, 4)"

Do While n < 11

Randomize Timer

x = Round (Rnd * 7, 7)

Print n, x, Int(x), Fix(x), Round(x, 4)

n = n + 1

Loop

End Sub

41

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 12: Formatting Functions

Formatting output is a very important part of programming so that the data can be

presented systematically and clearly to the users. Data in the previous lesson were

presented fairly systematically through the use of commas and some of the functions like

Int, Fix and Round. However, to have better control of the output format, we can use a

number of formatting functions in Visual basic.

The three most common formatting functions in VB are Tab, Space, and Format

(i) The Tab function

Tab (n); x

The item x will be displayed at a position that is n spaces from the left border of the output
form. There must be a semicolon in between Tab and the items you intend to display (VB
will actually do it for you automatically).

 Example1

.Private Sub Form_Activate

 Print "I"; Tab(5); "like"; Tab(10); "to"; Tab(15); "learn"; Tab(20); "VB"

 Print

 Print Tab(10); "I"; Tab(15); "like"; Tab(20); "to"; Tab(25); "learn"; Tab(20); "VB"

 Print

 Print Tab(15); "I"; Tab(20); ; "like"; Tab(25); "to"; Tab(30); "learn"; Tab(35); “VB"

End sub

The Output for example 1 is shown below:

42

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

(ii) The Space function

The Space function is very closely linked to the Tab function. However, there is a minor
difference. While Tab (n) means the item is placed n spaces from the left border of the
screen, the Space function specifies the number of spaces between two consecutive items.
For example, the procedure

 Example 2

Private Sub Form_Activate()

Print "Visual"; Space(10); "Basic"

End Sub

Means that the words Visual and Basic will be separated by 10 spaces

(iii) The Format function

The Format function is a very powerful formatting function which can display the numeric
values in various forms. There are two types of Format function, one of them is the built-in
or predefined format while another one can be defined by the users.

(i) The format of the predefined Format function is

Format (n, “style argument”)

where n is a number and the list of style arguments is given in the table

Style

argument

Explanation Example

General

Number

To display the number

without having separators

between thousands.

Format(8972.234, “General

Number”)=8972.234

Fixed To display the number

without having separators

between thousands and

rounds it up to two decimal

places.

Format(8972.2, “Fixed”)=8972.23

Standard To display the number with

separators or separators

between thousands and

rounds it up to two decimal

Format(6648972.265, “Standard”)=

6,648,972.27

43

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

places.

Currency To display the number with

the dollar sign in front, has

separators between

thousands as well as

rounding it up to two

decimal places.

Format(6648972.265, “Currency”)=

$6,648,972.27

Percent Converts the number to the

percentage form and

displays a % sign and

rounds it up to two decimal

places.

Format(0.56324, “Percent”)=56.32 %

Example 3

Private Sub Form_Activate()

Print Format (8972.234, "General Number")

Print Format (8972.2, "Fixed")

Print Format (6648972.265, "Standard")

Print Format (6648972.265, "Currency")

Print Format (0.56324, "Percent")

End Sub

Now, run the program and you will get an output like the figure below:

44

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

In this lesson, we will learn how to use some of the string manipulation function such as
Len, Right, Left, Mid, Trim, Ltrim, Rtrim, Ucase, Lcase, Instr, Val, Str ,Chr and Asc.

(i)The Len Function

The length function returns an integer value which is the length of a phrase or a sentence,

including the empty spaces. The format is

Len (“Phrase”)

For example,

Len (VisualBasic) = 11 and Len (welcome to VB tutorial) = 22

The Len function can also return the number of digits or memory locations of a number that

is stored in the computer. For example,

Private sub Form_Activate ()

X=sqr (16)

Y=1234

Z#=10#

Print Len(x), Len(y), and Len (z)

End Sub

will produce the output 1, 4 , 8. The reason why the last value is 8 is because z# is a

double precision number and so it is allocated more memory spaces.

45

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

(ii) The Right Function

The Right function extracts the right portion of a phrase. The format is

Right (“Phrase”, n)

Where n is the starting position from the right of the phase where the portion of the phrase

is going to be extracted. For example,

 Right(“Visual Basic”, 4) = asic

(iii)The Left Function

The Left$ function extract the left portion of a phrase. The format is

Left(“Phrase”, n)

Where n is the starting position from the left of the phase where the portion of the phrase is

going to be extracted. For example,

 Left (“Visual Basic”, 4) = Visu

 (iv) The Ltrim Function

The Ltrim function trims the empty spaces of the left portion of the phrase. The format is

Ltrim(“Phrase”)

.For example,

 Ltrim (“ Visual Basic”, 4)= Visual basic

(v) The Rtrim Function

The Rtrim function trims the empty spaces of the right portion of the phrase. The format is

Rtrim(“Phrase”)

.For example,

Rtrim (“Visual Basic ”, 4) = Visual basic

(vi) The Trim function

The Ttrim function trims the empty spaces on both side of the phrase. The format is

Trim(“Phrase”)

46

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

.For example,

Trim (“ Visual Basic ”) = Visual basic

(viii) The Mid Function

The Mid function extracts a substring from the original phrase or string. It takes the

following format:

Mid(phrase, position, n)

Where position is the starting position of the phrase from which the extraction process will

start and n is the number of characters to be extracted. For example,

Mid(“Visual Basic”, 3, 6) = ual Bas

(ix) The InStr function

 The InStr function looks for a phrase that is embedded within the original phrase and

returns the starting position of the embedded phrase. The format is

Instr (n, original phase, embedded phrase)

Where n is the position where the Instr function will begin to look for the embedded phrase.

For example

Instr(1, “Visual Basic”,” Basic”)=8

(x) The Ucase and the Lcase functions

The Ucase function converts all the characters of a string to capital letters. On the other

hand, the Lcase function converts all the characters of a string to small letters. For

example,

Ucase(“Visual Basic”) =VISUAL BASiC

Lcase(“Visual Basic”) =visual basic

(xi) The Str and Val functions

47

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The Str is the function that converts a number to a string while the Val function converts a

string to a number. The two functions are important when we need to perform

mathematical operations.

(xii) The Chr and the Asc functions

The Chr function returns the string that corresponds to an ASCII code while the Asc

function converts an ASCII character or symbol to the corresponding ASCII code. ASCII

stands for “American Standard Code for Information Interchange”. Altogether there are 255

ASCII codes and as many ASCII characters. Some of the characters may not be displayed

as they may represent some actions such as the pressing of a key or produce a beep sound.

The format of the Chr function is

Chr(charcode)

and the format of the Asc function is

Asc(Character)

The following are some examples:

Chr(65)=A, Chr(122)=z, Chr(37)=% , Asc(“B”)=66, Asc(“&”)=38

Lesson 14: Creating User-Defined Functions

14.1 Creating Your Own Function

The general format of a function is as follows:

Public Function functionName (Arg As dataType,..........) As dataType

or

Private Function functionName (Arg As dataType,..........) As dataType

* Public indicates that the function is applicable to the whole project and
 Private indicates that the function is only applicable to a certain module or procedure.

Example 14.1

In this example, a user can calculate the future value of a certain amount of money he has
today based on the interest rate and the number of years from now, supposing he will
invest this amount of money somewhere .The calculation is based on the compound

48

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

interest rate.

The code

Public Function FV(PV As Variant, i As Variant, n As Variant) As Variant

'Formula to calculate Future Value(FV)
'PV denotes Present Value
FV = PV * (1 + i / 100) ^ n

End Function

Private Sub compute_Click()

'This procedure will calculate Future Value
Dim FutureVal As Variant
Dim PresentVal As Variant
Dim interest As Variant
Dim period As Variant
PresentVal = PV.Text
interest = rate.Text
period = years.Text

'calling the funciton

FutureVal = FV(PresentVal, interest, period)
MsgBox ("The Future Value is " & FutureVal)

End Sub

Example 14.2 The Code

49

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The following program will automatically compute examination
grades based on the marks that a student obtained. The code is
shown on the right.

Public Function
grade(mark As
Variant) As String
Select Case mark
Case Is >= 80
grade = "A"
Case Is >= 70
grade = "B"
Case Is >= 60
grade = "C"
Case Is >= 50
grade = "D"
Case Is >= 40
grade = "E"
Case Else
grade = "F"
End Select
End Function

Private Sub
compute_Click()
grading.Caption =
grade(mark)

End Sub

Lesson 15: Creating VBA Functions For MS

Excel

15.1 The Needs to Create VBA Functions in MS-Excel

You can create your own functions to supplement the built-in functions in Microsoft Excel

spreadsheet, which are quite limited in some aspects. These user-defined functions are also

called Visual Basic for Applications functions, or simply VBA functions. They are very

useful and powerful if you know how to program them properly. One main reason we need

to create user defined functions is to enable us to customize our spreadsheet environment

for individual needs. For example, we might need a function that could calculate

commissions payment based on the sales volume, which is quite difficult if not impossible by

using the built-in functions alone. The code for VBA is illustrated on the right.

Table 15.1: Commissions Payment Table

Sales Volume($) Commissons

<500 3%

50

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

<1000 6%

<2000 9%

<5000 12%

>5000 15%

In table 15.1, when a salesman attain a sale volume of $6000, he will be paid

$6000x15%=$720.00. A visual basic function to calculate the commissions can be written

as follows:

Function Comm(Sales_V As Variant) as Variant

If Sales_V <500 Then

Comm=Sales_V*0.03

Elseif Sales_V>=500 and Sales_V<1000 Then

Comm=Sales_V*0.06

Elseif Sales_V>=1000 and Sales_V<2000 Then

Comm=Sales_V*0.09

Elseif Sales_V>=200 and Sales_V<5000 Then

Comm=Sales_V*0.12

Elseif Sales_V>=5000 Then

Comm=Sales_V*0.15

End If

End Function

15.2 Using Microsoft Excel Visual Basic Editor

To create VBA functions in MS Excel, you can click on tools,
select macro and then click on Visual Basic Editor as shown in Figure 15.1

 Figure 15.1: Inserting MS_Excel Visual Basic Editor

51

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Upon clicking the Visual Basic Editor, the VB Editor windows will appear as shown in figure
15.2. To create a function, type in the function as illustrated in section 15.1 above After
typing, save the file and then return to the Excel windows.

Figure 15.2 : The VB Editor

52

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 In the Excel window, type in the titles Sales Volume and Commissions in any two cells. By
referring to figure 15.3, key-in the Comm function at cell C4 and by referencing the value in
cell B4, using the format Comm(B4). Any value appear in cell B4 will pass the value to the
Comm function in cell C4. For the rest of the rows, just copy the formula by dragging the
bottom right corner of cell C4 to the required cells, a nice and neat table that shows the
commissions will automatically appear (as shown in figure 15.3). It can also be updated
anytime

Figure 15.3: MS Excel Windows- Sales Volume

53

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 16: Arrays

16.1 Introduction to Arrays

By definition, an array is a list of variables, all with the same data type and name. When we
work with a single item, we only need to use one variable. However, if we have a list of
items which are of similar type to deal with, we need to declare an array of variables
instead of using a variable for each item. For example, if we need to enter one hundred
names, we might have difficulty in declaring 100 different names, this is a waste of time
and efforts. So, instead of declaring one hundred different variables, we need to declare
only one array. We differentiate each item in the array by using subscript, the index value
of each item, for example name(1), name(2),name(3)etc. , which will make declaring
variables streamline and much systematic.

16.2 Dimension of an Array

An array can be one dimensional or multidimensional. One dimensional array is like a list of
items or a table that consists of one row of items or one column of items. A twodimensional
array will be a table of items that make up of rows and columns. While the format for a one
dimensional array is ArrayName(x), the format for a two dimensional array is

54

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

ArrayName(x,y) while a three dimensional array is ArrayName(x,y,z) . Normally it is
sufficient to use one dimensional and two dimensional array ,you only need to use higher
dimensional arrays if you need with engineering problems or even some accounting
problems.Let me illustrates the the arrays with tables.

Table 16.1. One dimensional Array

Student

Name
Name(1)Name(2)Name(3) Name(4) Name(5) Name(6)

Table 16.2 Two Dimensional Array

Name(1,1)Name(1,2)Name(1,3) Name(1,4)

Name(2,1)Name(2,2)Name(2,3) Name(2,4)

Name(3,1)Name(3,2)Name(3,3) Name(3,4)

16.2 Declaring Arrays

We could use Public or Dim statement to declare an array just as the way we declare a
single variable. The Public statement declares an array that can be used throughout an
application while the Dim statement declare an array that could be used only in a local
procedure.

The general format to declare a one dimensional array is as follow:

Dim arrayName(subs) as dataType

where subs indicates the last subscript in the array.

Example 16.1

Dim CusName(10) as String

will declare an array that consists of 10 elements if the statement Option Base 1 appear in
the declaration area, starting from CusName(1) to CusName(10). Otherwise, there will be
11 elements in the array starting from CusName(0) through to CusName(10)

CusNam

e(1)

CusNam

e(2)

CusNam

e(3)

CusNam

e(4)

CusNam

e(5)

CusNam

e(6)

CusNam

e(7)

CusNam

e(8)

CusNam

e(9)

CusNam

e(10)

55

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Example 16.2

Dim Count(100 to 500) as Integer

declares an array that consists of the first element starting from Count(100) and ends at
Count(500)

The general format to declare a two dimensional array is as follow:

Dim ArrayName(Sub1,Sub2) as dataType

Example 16.3

Dim StudentName(10,10) will declare a 10x10 table make up of 100 students' Names,
starting with StudentName(1,1) and end with StudentName(10,10).

16.3 Sample Programs

(i) The code

Dim studentName(10) As String
Dim num As Integer

Private Sub addName()
For num = 1 To 10
studentName(num) = InputBox("Enter the student name", "Enter
Name", "", 1500, 4500)
If studentName(num) <> "" Then
Form1.Print studentName(num)
Else
End
End If

Next
End Sub

The above program accepts data entry through an input box and
displays the entries in the form itself. As you can see, this program will
only allows a user to enter 10 names each time he click on the start
button.

(ii)

The Code

Dim
studentName(10) As
String
Dim num As Integer

Private Sub
addName()
For num = 1 To 10
studentName(num)
= InputBox("Enter
the student name")
List1.AddItem
studentName(num)
Next
End Sub
Private Sub
Start_Click()
addName

End Sub

The above program
accepts data entries
through an InputBox
and displays the
items in a list box.

Lesson 17: Working with Files

56

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

17.1 Introduction

Up until lesson 13 we are only creating programs that could accept data at runtime, when
the program is terminated, the data also disappear. Is it possible to save data accepted by a
VB program into a storage device, such as a hard disk or diskette, or even CDRW? The
answer is possible. In this chapter, we will learn how to create files by writing them into a
storage device and then retrieve the data by reading the contents of the files using a
customized VB program.

17.2 Creating files

To create a file , we use the following command

Open "fileName" For Output As #fileNumber

Each file created must have a file name and a file number for identification. As for the file
name, you must also specify the path where the file will reside.

Examples:

Open "c:\My Documents\sample.txt" For Output As #1

will create a text file by the name of sample.txt in My Document folder. The accompany file
number is 1. If you wish to create and save the file in A drive, simply change the path, as
follows"

Open "A:\sample.txt" For Output As #1

If you wish to create a HTML file , simply change the extension to .html

Open "c:\My Documents\sample.html" For Output As # 2

17.2.1 Sample Program : Creating a text file

Private Sub create_Click()

Dim intMsg As String
Dim StudentName As String

Open "c:\My Documents\sample.txt" For Output As #1
intMsg = MsgBox("File sample.txt opened")
StudentName = InputBox("Enter the student Name")
Print #1, StudentName
intMsg = MsgBox("Writing a" & StudentName & " to sample.txt ")

Close #1

intMsg = MsgBox("File sample.txt closed")

End Sub

* The above program will create a file sample.txt in the My Documents' folder and ready to
receive input from users. Any data input by users will be saved in this text file.

17.3 Reading a file

57

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

To read a file created in section 17.2, you can use the input # statement. However, we can
only read the file according to the format when it was written. You have to open the file
according to its file number and the variable that hold the data. We also need to declare the
variable using the DIM command.

17.3.1 Sample Program: Reading file

Private Sub Reading_Click()
Dim variable1 As String
Open "c:\My Documents\sample.txt" For Input As #1
Input #1, variable1
Text1.Text = variable1
Close #1

End Sub

* This program will open the sample.txt file and display its contents in the Text1 textbox.

 Example 17.3.2 Creating and Reading files using Common Dialog Box

This example uses the common dialog box to create and read the text file, which is
much easier than the previous examples as many operations are handled by the
common dialog box. The following is the program:

Dim linetext As String
Private Sub open_Click()
CommonDialog1.Filter = "Text files{*.txt)|*.txt"
CommonDialog1.ShowOpen

If CommonDialog1.FileName <> "" Then
Open CommonDialog1.FileName For Input As #1
Do
Input #1, linetext
Text1.Text = Text1.Text & linetext
Loop Until EOF(1)
End If
Close #1
End Sub
Private Sub save_Click()
CommonDialog1.Filter = "Text files{*.txt)|*.txt"
CommonDialog1.ShowSave
If CommonDialog1.FileName <> "" Then
Open CommonDialog1.FileName For Output As #1
Print #1, Text1.Text
Close #1
End If
End Sub

58

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The syntax CommonDialog1.Filter = "Text files{*.txt)|*.txt" ensures that only the
textfile is read or saved .The statement CommonDialog1.ShowOpen is to display the open
file dialog box and the statement CommonDialog1.ShowSave is to display thesave file
dialog box. Text1.Text = Text1.Text & linetext is to read the data and display them in the
Text1 textbox

The Output window is shown below:

Lesson 18: Graphics

raphics is a very important part of visual basic programming as an attractive interface will
be appealing to the users. In the old BASIC, drawing and designing graphics are considered
as difficult jobs, as they have to be programmed line by line in a text-based environment.
However, in Visual Basic, these jobs have been made easy. There are four basic controls in
VB that you can use to draw graphics on your form: the line control, the shape control, the
image box and the picture box

18.1The line and Shape controls

To draw a straight line, just click on the line control and then use your mouse to draw the
line on the form. After drawing the line, you can then change its color, width and style using
the BorderColor, BorderWidth and BorderStyle properties.

Similarly, to draw a shape, just click on the shape control and draw the shape on the form.
The default shape is a rectangle, with the shape property set at 0. You can change the
shape to square, oval, circle and rounded rectangle by changing the shape property’s value
to 1, 2, 3 4, and 5 respectively. In addition, you can change its background color using the

59

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

BackColor property, its border style using the BorderStyle property, its border color using
the BorderColor pproperty as well its border width using the BorderWidth property.

 Example 18.1

The program in this example allows the user to change the shape by selecting a particular
shape from a list of options from a list box, as well as changing its color through a common
dialog box.

The objects to be inserted in the form are a list box, a command button, a shape control
and a common dialog box. The common dialog box can be inserted by clicking on ‘project’
on the menu and then select the Microsoft Common Dialog Control 6.0 by clicking the check
box. After that, the Microsoft Common Dialog Control 6.0 will appear in the toolbox; and
you can drag it into the form. The list of items can be added to the list box through the
AddItem method. The procedure for the common dialog box to present the standard colors
is as follows:

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

Shape1.BackColor = CommonDialog1.Color

The last line will change the background color of the shape by clicking on a particular color
on the common dialog box as shown in the Figure below:

The Interface.

The color dialog box

60

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

he Code

Private Sub Form_Load()

List1.AddItem "Rectangle"

List1.AddItem "Square"

List1.AddItem "Oval"

List1.AddItem "Circle"

List1.AddItem "Rounded Rectangle"

List1.AddItem "Rounded Square"

End Sub

Private Sub List1_Click()

Select Case List1.ListIndex

Case 0

Shape1.Shape = 0

Case 1

Shape1.Shape = 1

Case 2

Shape1.Shape = 2

Case 3

61

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Shape1.Shape = 3

Case 4

Shape1.Shape = 4

Case 5

Shape1.Shape = 5

End Select

End Sub

Private Sub Command1_Click()

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

Shape1.BackColor = CommonDialog1.Color

End Sub

18.2 The Image Box and the Picture Box

Using the line and shape controls to draw graphics will only enable you to create a simple
design. In order to improve the look of the interface, you need to put in images and pictures
of your own. Fortunately, there are two very powerful graphics tools you can use in Visual
Basic which are the image box and the picture box.

To load a picture or image into an image box or a picture box, you can click on the picture
property in the properties window and a dialog box will appear which will prompt the user to
select a certain picture file. You can also load a picture at runtime by using the LoadPictrure
() method. The syntax is

Image1.Picture= LoadPicture("C:\path name\picture file name") or

picture1.Picture= LoadPicture("C:\path name\picture name")

For example, the following statement will load the grape.gif picture into the image box.

Image1.Picture= LoadPicture("C:\My Folder\VB program\Images\grape.gif")

Example 18.2

In this example, each time you click on the ‘change pictures’ button as shown in Figure
19.2, you will be able to see three images loaded into the image boxes. This program uses
the Rnd function to generate random integers and then uses the LoadPicture method to load
different pictures into the image boxes using the If…Then…Statements based on the random
numbers generated. The output is shown in Figure 19.2 below

62

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Dim a, b, c As Integer

Private Sub Command1_Click ()

Randomize Timer

a = 3 + Int(Rnd * 3)

b = 3 + Int(Rnd * 3)

c = 3 + Int(Rnd * 3)

If a = 3 Then

Image1(0).Picture = LoadPicture("C:\My Folder\VB program\Images\grape.gif")

End If

If a = 4 Then

Image1(0).Picture = LoadPicture("C:\My Folder\VB program\Images\cherry.gif")

End If

If a = 5 Then

Image1(0).Picture = LoadPicture("C:\My Folder\VB program\Images\orange.gif")

End If

If b = 3 Then

Image1(1).Picture = LoadPicture("C:\My Folder\VB program\Images\grape.gif")

End If

If b = 4 Then

Image1(1).Picture = LoadPicture("C:\My Folder\VB program\Images\cherry.gif")

63

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End If

If b = 5 Then

Image1(1).Picture = LoadPicture("C:\My Folder\VB program\Images\orange.gif")

End If

If c = 3 Then

Image1(2).Picture = LoadPicture("C:\My Folder\VB program\Images\grape.gif")

End If

If c = 4 Then

Image1(2).Picture = LoadPicture("C:\My Folder\VB program\Images\cherry.gif")

End If

If c = 5 Then

Image1(2).Picture = LoadPicture("C:\My Folder\VB program\Images\orange.gif")

End If

End Sub

18.3 PSet, Line and Circle Drawing Methods

Other than using the line and shape controls to draw graphics on the form, you can
also use the Pset, Line and Circle methods to draw graphics on the form.

(a) The Pset Method

The Pset method draw a dot on the screen, it takes the format

Pset (x , y), color

(x,y) is the coordinates of the point and color is its color. To specify the color, you
can use the color codes or the standard VB color constant such as VbRed, VbBlue,
VbGeen and etc. For example, Pset(100,200), VbRed will display a red dot at the
(100,200) coordinates.

The Pset method can also be used to draw a straight line on the form. The procedure
is

For x= a to b

Pset(x,x)

Next x

This procedure will draw a line starting from the point (a,a) and to the point (b,b).
For example, the following procedure will draw a magenta line from the point (0,0)
to the point (1000,1000).

64

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

For x= 0 to 100

Pset(x,x) , vbMagenta

Next x

(b) The Line Method

Although the Pset method can be used to draw a straight line on the form, it is a
little slow. It is better to use the Line method if you want to draw a straight line
faster. The format of the Line command is shown below. It draws a line from the
point (x1, y1) to the point (x2, y2) and the color constant will determine the color of
the line.

Line (x1, y1)-(x2, y2), color

For example, the following command will draw a red line from the point (0, 0) to the
point (1000, 2000).

Line (0, 0)-(1000, 2000), VbRed

The Line method can also be used to draw a rectangle. The format is

Line (x1-y1)-(x2, y2), color, B

The four corners of the rectangle are (x1-y1), (x2-y1), (x1-y2) and (x2, y2)

Another variation of the Line method is to fill the rectangle with a certain color. The
format is

Line (x1, y1)-(x2, y2), color, BF

If you wish to draw the graphics in a picture box, you can use the following formats

� Picture1.Line (x1, y1)-(x2, y2), color

� Picture1.Line (x1-y1)-(x2, y2), color, B

� Picture1.Line (x1-y1)-(x2, y2), color, BF

� Picture1.Circle (x1, y1), radius, color

(c) The Circle Method

The circle method takes the following format

Circle (x1, y1), radius, color

That draws a circle centered at (x1, y1), with a certain radius and a certain border
color. For example, the procedure

Circle (400, 400), 500, VbRed

draws a circle centered at (400, 400) with a radius of 500 twips and a red border.

65

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 19: Creating Multimedia Applications-
Part I

To be able to play multimedia files or multimedia devices, you have to insert Microsoft
Multimedia Control into your VB applications that you are going to create. However,
Microsoft Multimedia Control is not normally included in the startup toolbox, therefore you
need to add the MM control by pressing Ctrl+T and select it from the components dialog
box that is displayed.

19.1 Creating a CD player

In this program, you can create a CD player that resembles an actual CD player. It allows
the user select a track to play, to fast forward, to rewind and also to eject the CD. It can
also display the track being played. The interface and code are shown below.

You can create various multimedia applications in VB that could play audio CD, audiofiles,

VCD , video files and more.

The Interface.

The Code

Private Sub Form_Load()
'To position the page at the center
Left = (Screen.Width - Width) \ 2
Top = (Screen.Height - Height) \ 2
'Initialize the CD
myCD.Command = "Open"
End Sub

Private Sub myCD_StatusUpdate()

66

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

'Update the track number
trackNum.Caption = myCD.Track
End Sub

Private Sub Next_Click()
myCD.Command = "Next"
End Sub

Private Sub Play_Click()
myCD.Command = "Play"
End Sub

Private Sub Previous_Click()
myCD.Command = "Prev"
End Sub

Private Sub Stop_Click()
myCD.Command = "Stop"
End Sub

Lesson 20: Creating Multimedia Applications-
Part II

 In previous lesson, we have programmed a CD player. Now, by making some modifications,

you canl transform the CD player into an audio player. This player will be created in such a

way that it could search for wave and midi files in your drives and play them.

In this project, you need to insert a ComboBox, a DriveListBox, a DirListBox, a TextBox
and a FileListBox into your form. I Shall briefly discuss the function of each of the above
controls. Besides, you must also insert Microsoft Multimedia Control(MMControl) into
your form , you may make it visible or invisible. In my program, I choose to make it
invisible so that I can use the command buttons created to control the player.

• ComboBox- to display and enable selection of different type of files.
• DriveListBox- to allow selection selection of different drives available on your PC.
• DirListBox - To display directories
• TextBox - To display selected files
• FileListBox- To display files that are available
• Relevant code must be written to coordinate all the above controls so that the

application can work properly. The program should follow in the following logical
way:

• Step 1: User chooses the type of files he wants to play.
• Step2:User selects the drive that might contains the relevant audio files.
• Step 3:User looks into directories and subdirectories for the files specified in step1.

The files should be displayed in the FileListBox.
• Step 4: User selects the files from the FileListBox and click the Play button.

67

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

• Step 5: User clicks on the Stop button to stop playing and Exit button to end the
application.

• The Interface

•

The Code

Private Sub Combo1_Change()

' to determine file type

If ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf ListIndex = 1 Then
File1.Pattern = ("*.mid")
Else
Fiel1.Pattern = ("*.*")
End If

End Sub

Private Sub Dir1_Change()

'To change directories and subdirectories(or folders and subfolders)

File1.Path = Dir1.Path
If Combo1.ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf Combo1.ListIndex = 1 Then
File1.Pattern = ("*.mid")
Else
File1.Pattern = ("*.*")
End If

68

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Private Sub Drive1_Change()
'To change drives
Dir1.Path = Drive1.Drive
End Sub

Private Sub File1_Click()
If Combo1.ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf Combo1.ListIndex = 1 Then
File1.Pattern = ("*.mid")
Else
File1.Pattern = ("*.*")
End If

If Right(File1.Path, 1) <> "\" Then
filenam = File1.Path + "\" + File1.FileName
Else
filenam = File1.Path + File1.FileName
End If
Text1.Text = filenam

End Sub

Private Sub Form_Load()
'To center the Audioplayer startup page
Left = (Screen.Width - Width) \ 2
Top = (Screen.Height - Height) \ 2
Combo1.Text = "*.wav"
Combo1.AddItem "*.wav"
Combo1.AddItem "*.mid"
Combo1.AddItem "All files"
End Sub

Private Sub play_Click()
'To play WaveAudio file or Midi File
Command2_Click
If Combo1.ListIndex = 0 Then
AudioPlayer.DeviceType = "WaveAudio"
ElseIf Combo1.ListIndex = 1 Then
AudioPlayer.DeviceType = "Sequencer"
End If
AudioPlayer.FileName = Text1.Text
AudioPlayer.Command = "Open"
AudioPlayer.Command = "Play"

69

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Private Sub stop_Click()
If AudioPlayer.Mode = 524 Then Exit Sub
If AudioPlayer.Mode <> 525 Then
AudioPlayer.Wait = True
AudioPlayer.Command = "Stop"
End If
AudioPlayer.Wait = True
AudioPlayer.Command = "Close"

End Sub

Lesson 21: Creating Multimedia Applications-

Part III

In lesson 20, we have created an audio player. Now, by making further modifications, you
can transform the audio player into a picture viewer. This viewer will be created in such a
way that it could search for all types of graphics files in your drives and displays them in a
picture frame.

Similar to the previous project, in this project, you need to insert a ComboBox, a
DriveListBox, a DirListBox, a TextBox and a FileListBox into your form. I Shall briefly
explain again the function of each of the above controls.

• ComboBox- to display and enable selection of different type of files.
• DriveListBox- to allow selection selection of different drives available on your PC.
• DirListBox - To display directories
• TextBox - To display selected files
• FileListBox- To display files that are availabl

Relevant codes must be written to coordinate all the above controls so that the application
can work properly. The program should flow in the following logical way:

Step 1: User chooses the type of files he wants to play.

Step2:User selects the drive that might contains the relevant graphic files.

Step 3:User looks into directories and subdirectories for the files specified in step1. The files
should be displayed in the FileListBox.

Step 4: User selects the files from the FileListBox and click the Show button.

Step 5: User clicks on Exit button to end the application.

The Interface

70

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 The Code

Private Sub Form_Load()

'To center the player
Left = (Screen.Width - Width) \ 2
Top = (Screen.Height - Height)\2

Combo1.Text = "All graphic files"
Combo1.AddItem "All graphic files"
Combo1.AddItem "All files"

End Sub

71

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Private Sub Combo1_Change()

If ListIndex = 0 Then
File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")
Else
Fiel1.Pattern = ("*.*")
End If

End Sub

'Specific the types of files to load
Private Sub Dir1_Change()

File1.Path = Dir1.Path
File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

End Sub

'Changing Drives

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click()

If Combo1.ListIndex = 0 Then
File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")
Else
File1.Pattern = ("*.*")
EnId If

If Right(File1.Path, 1) <> "\" Then
filenam = File1.Path + "\" + File1.FileName
Else
filenam = File1.Path + File1.FileName
End If
Text1.Text = filenam

End Sub

Private Sub show_Click()

If Right(File1.Path, 1) <> "\" Then
filenam = File1.Path + "\" + File1.FileName
Else
filenam = File1.Path + File1.FileName
End If

72

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

'To load the picture into the picture box
picture1.Picture = LoadPicture(filenam)

End Sub

Lesson 22: Creating Multimedia Applications-
Part IV:

A Multimedia Player

In lesson 20, we have created an audio player. Now, by making more modifications, you
can transform the audio player into a multimedia player. This player will be able to search
for all types of movie files and audio files. your drives and play them.

In this project, you need to insert a ComboBox, a DriveListBox, a DirListBox, a TextBox
,a FileListBox and a picture box (for playing movie) into your form. I Shall briefly discuss
the function of each of the above controls. Besides, you must also insert Microsoft
Multimedia Control(MMControl) into your form , you may make it visible or invisible. In
my program, I choose to make it invisible so that I could use the command buttons created
to control the player.

• ComboBox- to display and enable selection of different type of files.
• DriveListBox- to allow selection selection of different drives available on your PC.
• DirListBox - To display directories
• TextBox - To display selected files
• FileListBox- To display files that are available

elevant codes must be written to coordinate all the above controls so that the application
can work properly. The program should flow in the following logical way:

Step 1: User chooses the type of files he wants to play.

Step2:User selects the drive that might contains the relevant audio files.

Step 3:User looks into directories and subdirectories for the files specified in step1. The files
should be displayed in the FileListBox.

Step 4: User selects the files from the FileListBox and clicks the Play button.

Step 5: User clicks on the Stop button to stop playing and Exit button to end the
application.

 The Interface

73

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The Code

Private Sub Form_Load()

Left = (Screen.Width - Width) \ 2
Top = (Screen.Height - Height) \ 2
Combo1.Text = "*.wav"
Combo1.AddItem "*.wav"
Combo1.AddItem "*.mid"
Combo1.AddItem "*.avi;*.mpg"
Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change()

74

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

If ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf ListIndex = 1 Then
File1.Pattern = ("*.mid")
ElseIf ListIndex = 2 Then
File1.Pattern = ("*.avi;*.mpg")
Else
Fiel1.Pattern = ("*.*")
End If

End Sub

Private Sub Dir1_Change()

File1.Path = Dir1.Path
If Combo1.ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf Combo1.ListIndex = 1 Then
File1.Pattern = ("*.mid")
ElseIf Combo1.ListIndex = 2 Then
File1.Pattern = ("*.avi;*.mpg")
Else
File1.Pattern = ("*.*")
End If

End Sub

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click()

If Combo1.ListIndex = 0 Then
File1.Pattern = ("*.wav")
ElseIf Combo1.ListIndex = 1 Then
File1.Pattern = ("*.mid")
ElseIf Combo1.ListIndex = 2 Then
File1.Pattern = ("*.avi;*.mpg")
Else
File1.Pattern = ("*.*")
End If

If Right(File1.Path, 1) <> "\" Then
filenam = File1.Path + "\" + File1.FileName
Else
filenam = File1.Path + File1.FileName
End If
Text1.Text = filenam

End Sub

Private Sub play_Click()

MMPlayer.FileName = Text1.Text
MMPlayer.Command = "Open"

75

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

MMPlayer.Command = "Play"
MMPlayer.hWndDisplay = videoscreen.hWnd

End Sub

Private Sub stop_Click()

If MMPlayer.Mode = 524 Then Exit Sub
If MMPlayer.Mode <> 525 Then
MMPlayer.Wait = True
MMPlayer.Command = "Stop"
End If
MMPlayer.Wait = True
MMPlayer.Command = "Close"

End Sub

Lesson 23: Creating database applications in
VB-Part I

Visual basic allows us to manage databases created with different database programs such
as MS Access, Dbase, Paradox and etc. In this lesson, we are not dealing with how to create
database files but we will see how we can access database files in the VB environment. In
the following example, we will create a simple database application which enable one to
browse customers' names. To create this application, insert the data control into the new
form. Place the data control somewhere at the bottom of the form. Name the data control
as data_navigator. To be able to use the data control, we need to connect it to any
database. We can create a database file using any database application but I suggest we
use the database files that come with VB6. Let select NWIND.MDB as our database file.

To connect the data control to this database, double-click the DatabaseName property in
the properties window and select the above file, i.e NWIND.MDB. Next, double-click on the
RecordSource property to select the customers table from the database. You can also
change the caption of the data control to anything but I use "Click to browse Customers"
here. After that, we will place a label and change its caption to Customer Name. Last but
not least, insert another label and name it as cus_name and leave the label empty as
customers' names will appear here when we click the arrows on the data control. We need
to bind this label to the data control for the application to work. To do this, open the label's
DataSource and select data_navigator that will appear automatically. One more thing that
we need to do is to bind the label to the correct field so that data in this field will appear on
this label. To do this, open the DataField property and select ContactName. Now, press F5
and run the program. You should be able to browse all the customers' names by clicking the
arrows on the data control.

The Design Interface.

76

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The Runtime Interface

You can also add other fields using exactly the same method. For example, you can add
adress, City and telephone number to the database browser.

77

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 24: Creating database applications in
VB-Part II

In Lesson 23, you have learned how to create a simple database application using data
control. In this lesson, you will work on the same application but use some slightly more
advance commands. The data control support some methods that are useful in manipulating
the database, for example, to move the pointer to a certain location. The following are some
of the commands that you can use to move the pointer around:

data_navigator.RecordSet.MoveFirst ' Move to the first record

data_navigator.RecordSet.MoveLast ' Move to the last record

data_navigator.RecordSet.MoveNext ' Move to the next record

data_navigator.RecordSet.Previous ' Move to the first record

You can also add, save and delete records using the following commands:

data_navigator.RecordSet.AddNew ' Adds a new record

data_navigator.RecordSet.Update ' Updates and saves the new record

78

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

data_navigator.RecordSet.Delete ' Deletes a current record

*note: data_navigator is the name of data control

In the following example, you shall insert four commands and label them as First Record,
Next Record, Previous Record and Last Record . They will be used to navigator around the
database without using the data control. You still need to retain the same data control (from
example in lesson 19) but set the property Visible to no so that users will not see the data
control but use the button to browse through the database instead. Now, double-click on
the command button and key in the codes according to the labels.

Private Sub Command2_Click()
dtaBooks.Recordset.MoveFirst
End Sub

Private Sub Command1_Click()
dtaBooks.Recordset.MoveNext
End Sub

Private Sub Command3_Click()
dtaBooks.Recordset.MovePrevious
End Sub

Private Sub Command4_Click()
dtaBooks.Recordset.MoveLast
End Sub

Run the application and you shall obtain the interface below and you will be able to browse
the database using the four command buttons.

79

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 25: Creating VB database applications
using ADO control

In Lesson 22 and Lesson 23, we have learned how to build VB database applications using

data control. However, data control is not a very flexible tool as it could only work with

limited kinds of data and must work strictly in the Visual Basic environment. To overcome

these limitations, we can use a much more powerful data control in Visual Basic, known as

ADO control. ADO stands for ActiveX data objects. As ADO is ActiveX-based, it can work in

different platforms (different computer systems) and different programming languages.

Besides, it can access many different kinds of data such as data displayed in the Internet

browsers, email text and even graphics other than the usual relational and non relational

database information.

To be able to use ADO data control, you need to insert it into the toolbox. To do this, simply

press Ctrl+T to open the components dialog box and select Microsoft ActiveX Data Control

6. After this, you can proceed to build your ADO-based VB database applications.

80

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The following example will illustrate how to build a relatively powerful database application
using ADO data control. First of all, name the new form as frmBookTitle and change its
caption to Book Titles- ADO Application. Secondly, insert the ADO data control and
name it as adoBooks and change its caption to book. Next, insert the necessary labels,
text boxes and command buttons. The runtime interface of this program is shown in the
diagram below, it allows adding and deletion as well as updating and browsing of data.

The properties of all the controls are listed as follow:

Form Name frmBookTitle

Form Caption
Book Titles -
ADOApplication

ADO Name adoBooks
Label1 Name lblApp
Label1 Caption Book Titles
Label 2 Name lblTitle
Label2 Caption Title :
Label3 Name lblYear
Label3 Caption Year Published:
Label4 Name lblISBN
Label4 Caption ISBN:
Labe5 Name lblPubID
Label5 Caption Publisher's ID:
Label6 Name lblSubject
Label6 Caption Subject :
TextBox1 Name txtitle
TextBox1 DataField Title
TextBox1 DataSource adoBooks
TextBox2 Name txtPub
TextBox2 DataField Year Published
TextBox2 DataSource adoBooks

81

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

TextBox3 Name txtISBN
TextBox3 DataField ISBN
TextBox3 DataSource adoBooks
TextBox4 Name txtPubID
TextBox4 DataField PubID
TextBox4 DataSource adoBooks
TextBox5 Name txtSubject
TextBox5 DataField Subject
TextBox5 DataSource adoBooks
Command Button1 Name cmdSave
Command Button1
Caption

&Save

Command Button2 Name cmdAdd
Command Button2
Caption

&Add

Command Button3 Name cmdDelete
Command Button3
Caption

&Delete

Command Button4 Name cmdCancel
Command Button4
Caption

&Cancel

Command Button5 Name cmdPrev
Command Button5
Caption

&<

Command Button6 Name cmdNext
Command Button6
Caption

&>

Command Button7 Name cmdExit
Command Button7
Caption

E&xit

To be able to access and manage a database, you need to connect the ADO data control to
a database file. We are going to use BIBLIO.MDB that comes with VB6. To connect ADO to
this database file , follow the steps below:

a) Click on the ADO control on the form and open up the properties window.

b) Click on the ConnectionString property, the following dialog box will appear.

82

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

when the dialog box appear, select the Use Connection String's Option. Next, click build
and at the Data Link dialog box, double-Click the option labeled Microsoft Jet 3.51 OLE
DB provider.

83

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 After that, click the Next button to select the file BIBLO.MDB. You can click on Text
Connection to ensure proper connection of the database file. Click OK to finish the
connection.

Finally, click on the RecordSource property and set the command type to adCmd Table
and Table name to Titles. Now you are ready to use the database file.

84

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Now, you need to write code for all the command buttons. After which, you can make the
ADO control invisible.

For the Save button, the program codes are as follow:

Private Sub cmdSave_Click()

adoBooks.Recordset.Fields("Title") = txtTitle.Text
adoBooks.Recordset.Fields("Year Published") = txtPub.Text
adoBooks.Recordset.Fields("ISBN") = txtISBN.Text
adoBooks.Recordset.Fields("PubID") = txtPubID.Text
adoBooks.Recordset.Fields("Subject") = txtSubject.Text
adoBooks.Recordset.Update

End Sub

For the Add button, the program codes are as follow:

Private Sub cmdAdd_Click()

adoBooks.Recordset.AddNew

End Sub

85

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

For the Delete button, the program codes are as follow:

Private Sub cmdDelete_Click()

Confirm = MsgBox("Are you sure you want to delete this record?", vbYesNo, "Deletion
Confirmation")
If Confirm = vbYes Then
adoBooks.Recordset.Delete
MsgBox "Record Deleted!", , "Message"
Else
MsgBox "Record Not Deleted!", , "Message"
End If

End Sub

For the Cancel button, the program codes are as follow:

Private Sub cmdCancel_Click()

txtTitle.Text = ""
txtPub.Text = ""
txtPubID.Text = ""
txtISBN.Text = ""
txtSubject.Text = ""

End Sub

For the Previous (<) button, the program codes are

Private Sub cmdPrev_Click()

If Not adoBooks.Recordset.BOF Then
adoBooks.Recordset.MovePrevious
If adoBooks.Recordset.BOF Then
adoBooks.Recordset.MoveNext
End If
End If

End Sub

For the Next(>) button, the program codes are

Private Sub cmdNext_Click()

If Not adoBooks.Recordset.EOF Then
adoBooks.Recordset.MoveNext

86

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

If adoBooks.Recordset.EOF Then
adoBooks.Recordset.MovePrevious
End If
End If

End Sub

Lesson 26: Using Microsoft DataGrid Control
6.0

In the previous chapter, we use textboxes to display data by connecting them to a database
via Microsoft ADO data Control 6.0. The textbox is not the only control that can display data
from a database, many other controls in Visual Basic can display data. One of the them is
the DataGrid control. DataGrid control can be used to display the entire table of a recordset
of a database. It allows users to view and edit the data.

DataGrid control is the not the default item in the Visual Basic control toolbox, you have add
it from the VB6 components. To add the DataGrid control, click on the project in the menu
bar and select components where a dialog box that displays all the available VB6
components. Select Microsoft DataGrid Control 6.0 by clicking the checkbox beside this
item. Before you exit the dialog box, you also need to select the Microsoft ADO data control
so that you are able to access the database. Lastly, click on the OK button to exit the dialog
box. Now you should be able to see that the DataGrid control and the ADO data control are
added to the toolbox. The next step is to drag the DataGrid control and the ADO data
control into the form.

The components dialog box is shown below:

87

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

88

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Before you proceed , you need to create a database file using Microsoft Access. Here I
created a file to store my the information of my books and I name the table book. After you
have created the table, enter a few records such as mine. The table is shown below:

89

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 Now you need to connect the database to the ADO data control. To do that, right click on
the ADO data control and select the ADODC properties, the following dialog box will appear.

90

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Finally you need to display the data in the DataGrid control. To accomplish this, go to the
properties window and set the DataSource property of the DataGrid to Adodc1. You can also
permit the user to add and edit your records by setting the AllowUpdate property to True. If
you set this property to false, the user cannot edit the records. Now run the program and
the output window is shown below:

91

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 27: Using SQL queries in Visual Basic
6

In the previous chapter, we have learned to use the DataGrid Control to display data from a
database in Visual Basic 6 environment. However, it does not allow users to search for and
select the information they want to see. In order to search for a certain information, we
need to use SQL query. SQL stands for Structures Query Language. Using SQL keywords,
we are able to select specific information to be displayed based on certain criteria. The most
basic SQL keyword is SELECT, it is used together with the keyword FROM to select
information from one or more tables from a database. The syntax is:

 SELECT fieldname1,fieldname2,.....,fieldnameN FROM
TableName

fieldname1, fieldname2,......fieldnameN are headings of the columns from a table of a
database. You can select any number of fieldname in the query. If you wish to select all the
information, you can use the following syntax:

 SELECT * FROM TableName

In order to illustrate the usage of SQL queries, lets create a new database in Microsoft
Access with the following filenames ID, Title, Author, Year, ISBN, Publisher, Price and
save the table as book and the database as books.mdb in a designated folder.

Next, we will start Visual Basic and insert an ADO control, a DataGrid and three command
buttons. Name the three command buttons as cmdAuthor, cmdTitle and cmdAll. Change

92

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

their captions to Display Author ,Display Book Title and Display All respectively. You
can also change the caption of the form to My Books. The design interface is shown below:

 Now you need to connect the database to the ADO data control. Please refer to lesson 25
for the details. However, you need to make one change. At the ADODC property pages
dialog box, click on the Recordsource tab and select 1-adCmdText under command type
and under Command Text(SQL) key in SELECT * FROM book.

93

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Next, click on the command buttton cmdAuthor and key in the following statements:

Private Sub cmdAuthor_Click()

Adodc1.RecordSource = "SELECT Author FROM book"
Adodc1.Refresh
Adodc1.Caption = Adodc1.RecordSource

End Sub

and for the command button cmdTitle, key in

Private Sub cmdTitle_Click()

Adodc1.RecordSource = "SELECT Title FROM book"
Adodc1.Refresh
Adodc1.Caption = Adodc1.RecordSource

End Sub

Finally for the command button cmdAll, key in

Private Sub cmdAll_Click()

Adodc1.RecordSource = "SELECT * FROM book"
Adodc1.Refresh
Adodc1.Caption = Adodc1.RecordSource

94

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Now, run the program and when you click on the Display Author button, only the names of
authors will be displayed, as shown below:

and when you click on the Display Book Title button, ony the book titles will be displayed, as
show below:

95

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lastly, click on the Display All button and all the information will be displayed.

Lesson 28: More SQL Keywords

96

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

In the previous chapter, we have learned to use the basic SQL keywords SELECT and FROM
to manipulate database in Visual Basic 6 environment. In this lesson, you will learn to use
more SQL keywords. One of the more important SQL keywords is WHERE. This keyword
allow the user to search for data that fulfill certain criteria. The Syntax is as follows:

SELECT fieldname1,fieldname2,.....,fieldnameN FROM TableName WHERE Criteria

The criteria can be specified using operators such as =, >,<, <=, >=, <> and Like.

Using the database books.mdb created in the previous chapter, we will show you a few
examples. First of all, start a new project and insert a DataGrid control and an ADO control
into the form. . At the ADODC property pages dialog box, click on the Recordsource tab and
select 1-adCmdText under command type and under Command Text(SQL) key in SELECT
* FROM book. Next, insert one textbox and put it on top of the DataGrid control, this will
be the place where the user can enter SQL query text. Insert one command button and
change the caption to Query. The design interface is shown below:

Example 21d1: Query based on Author

Run the program and key in the following SQL query statement

SELECT Title, Author FROM book WHERE Author='Liew Voon Kiong'

Where you click on the query button, the DataGrid will display the author name Liew Voon

97

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Kiong. as shown below:

Example 21d2:Query based on year

Run the program and key in the following SQL query statement:

SELECT * FROM book WHERE Year>2005

Where you click on the query button, the DataGrid will display all the books that were
published after the year 2005.

98

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

You can also try following queries:

• SELECT * FROM book WHERE Price<=80
• SELECT * FROM book WHERE Year=2008
• SELECT * FROM book WHERE Author<>'Liew Voon Kiong'

You may also search for data that contain certain characters by pattern matching. It
involves using the Like operator and the % symbol. For example, if you want to search for
a author name that begins with alphabet J, you can use the following query statement

SELECT * FROM book WHERE Author Like 'J%'

Where you click on the query command button, the records where authors' name start with
the alphabet J will be displayed, as shown below:

99

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Next, if you wish to rank order the data, either in ascending or descending order, you can
use the ORDER By , ASC (for ascending) and DESC(Descending) SQL keywords.

The general formats are

 SELECT fieldname1, fieldname2.....FROM table ORDER BY
fieldname ASC

 SELECT fieldname1, fieldname2.....FROM table ORDER BY
fieldname DESC

Example 21d3:

The following query statement will rank the records according to Author in ascending order.

 SELECT Title, Author FROM book ORDER BY Author ASC

100

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Example 21d4

The following query statement will rank the records according to price in descending order.

SELECT Title, Price FROM book ORDER BY Price DESC

101

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 29: Creating Advanced VB database

application using ADO control

In previous lessons, you have learned how to design database applications using data
control and ADO control. However, those applications are very simple and plain . In this
lesson, you will learn how to create a more advanced database application using ADO
control. The application you are going to create is known as an electronic library. This
electronic library will be able to accept the user registration as well as handling login
command that require the user's password, thus enhancing the security aspect of the
database. Basically, the application will constitute a welcome menu, a registration menu, a
Login menu and the main database menu. The sequence of the menus are illustrated as
follow:

102

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

2.1 The Welcome Menu

First of all, you need to design the Welcome menu. You can follow the example as follow:

In this form, you need to insert three command buttons and set their properties as follow:

Form name main_menu
command button 1
Name

cmdRegister

command button 1
Caption

Register

command button 2
Name

cmdLogin

command button 2 Login

103

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Caption
command button 3
Name

cmdCancel

command button 3
Caption

Cancel

The code is as follows:

Private Sub cmdCancel_Click()
End
End Sub

Private Sub cmdLogin_Click()
main_menu.Hide
Login_form.Show
End Sub

Private Sub cmdRegister_Click()
main_menu.Hide
Register.Show
End Sub

29.2 The Registration Form

If a new user click the Register button, the registration form will appear. An example is
illustrated as follow:

This registration forms consist of two text boxes , three command buttons and an ADO
control. Their properties are set as follow:

104

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Form name Register
textbox 1 name txtName
textbox 2 name txtpassword
textbox 2
PasswordChar

*

command button 1
name

cmdConfirm

command button 1
Caption

Confirm

command button 2
name

cmdClear

command button 2
Caption

Clear

command button 3
name

cmdCancel

command button 3
Caption

Cancel

ADO control name UserInfo

note that the PasswordChar of textbox 2 is set as * which means users will not be able to
see the actual characters they enter, they will only see the * symbol.

The codes are as follow:

Private Sub cancel_Click()
End
End Sub

Private Sub cmdClear_Click()
txtName.Text = ""
txtpassword.Text = ""

End Sub

Private Sub cmdConfirm_Click()

UserInfo.Recordset.Fields("username") = txtName.Text
UserInfo.Recordset.Fields("password") = txtpassword.Text
UserInfo.Recordset.Update

Register.Hide

Login_form.Show

End Sub

Private Sub Form_Load()
UserInfo.Recordset.AddNew
End Sub

105

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

29.3 The Login Menu

The Login menu is illustrated as follow:

There are two text boxes and a command button, their properties are set as follow:

Textbox 1 name txtName
Textbox 2 name txtpassword
Command button 1
name

cmdLogin

Command button 1
Caption

Login

Form name Login_form

The codes are as follow:

Private Sub cmdLogin_Click()

Dim usrname As String
Dim psword As String
Dim usernam As String
Dim pssword As String
Dim Msg As String

Register.UserInfo.Refresh
usrname = txtName.Text
psword = txtpassword.Text

Do Until Register.UserInfo.Recordset.EOF
If Register.UserInfo.Recordset.Fields("username").Value = usrname And

106

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Register.UserInfo.Recordset.Fields("password").Value = psword Then
Login_form.Hide
frmLibrary.Show
Exit Sub

Else
Register.UserInfo.Recordset.MoveNext
End If

Loop

Msg = MsgBox("Invalid password, try again!", vbOKCancel)
If (Msg = 1) Then
Login_form.Show
txtName.Text = ""
txtpassword = ""

Else
End
End If

End Sub

29.4 The Main Database Manager

The main database manager is illustrated as follow:

107

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The properties of all controls are listed in the table below:

Form name frmLibrary
ADO control name adoLibrary
ADO visible False
TextBox 1 name txtTitleA
TextBox 2 name txtAuthor
TextBox 3name txtPublisher
TextBox 4 name txtYear
TextBox 5 name txtCategory
Command button 1
name

cmdSave

Command button 1
caption

&Save

Command button 2
name

cmdNew

Command button 2
caption

&New

Command button 3
name

cmdDelete

Command button 3
caption

&Delete

Command button 4
name

cmdCancel

Command button 4
caption

&Cancel

Command button 5
name

cmdNext

Command button 5
caption

N&ext

Command button 6
name

cmdPrevious

Command button 6
caption

&Previous

Command button 7
name

cmdExit

Command button 7
caption

E&xit

The codes are as follow:

Private Sub cmdCancel_Click()
txtTitle.Text = ""
txtAuthor.Text = ""

108

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

txtPublisher.Text = ""
txtYear.Text = ""
txtCategory.Text = ""
End Sub

Private Sub cmdDelete_Click()
Confirm = MsgBox("Are you sure you want to delete this record?", vbYesNo, "Deletion
Confirmation")
If Confirm = vbYes Then
adoLibrary.Recordset.Delete
MsgBox "Record Deleted!", , "Message"
Else
MsgBox "Record Not Deleted!", , "Message"
End If

End Sub

Private Sub cmdExit_Click()
End
End Sub

Private Sub cmdNew_Click()
adoLibrary.Recordset.AddNew

End Sub

Private Sub cmdNext_Click()
If Not adoLibrary.Recordset.EOF Then
adoLibrary.Recordset.MoveNext
If adoLibrary.Recordset.EOF Then
adoLibrary.Recordset.MovePrevious
End If
End If
End Sub

Private Sub cmdPrevious_Click()
If Not adoLibrary.Recordset.BOF Then
adoLibrary.Recordset.MovePrevious
If adoLibrary.Recordset.BOF Then
adoLibrary.Recordset.MoveNext
End If
End If
End Sub

Private Sub cmdSave_Click()

adoLibrary.Recordset.Fields("Title").Value = txtTitle.Text
adoLibrary.Recordset.Fields("Author").Value = txtAuthor.Text
adoLibrary.Recordset.Update

End Sub

109

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 30 : Animation-Part I

Animation is always an interesting and exciting part of programming. Although visual basic
is not designed to handle advance animations, you can still create some interesting
animated effects if you put in some hard thinking. There are many ways to create animated
effects in VB6, but for a start we will focus on some easy methods.

The simplest way to create animation is to set the VISIBLE property of a group of images or
pictures or texts and labels to true or false by triggering a set of events such as clicking a
button. Let's examine the following example:

This is a program that create the illusion of moving the jet plane in four directions, North,
South ,East, West. In order to do this, insert five images of the same picture into the form.
Set the visible property of the image in the center to be true while the rest set to false. On
start-up, a user will only be able to see the image in the center. Next, insert four command
buttons into the form and change the labels to Move North, Move East, Move West and
Move South respectively. Double click on the move north button and key in the following
procedure:

Sub Command1_click()

Image1.Visible = False
Image3.Visible = True
Image2.Visible = False
Image4.Visible = False
Image5.Visible = False

End Sub

By clicking on the move north button, only image 3 is displayed. This will give an illusion
that the jet plane has moved north. Key in similar procedures by double clicking other
command buttons. You can also insert an addition command button and label it as Reset
and key in the following codes:

Image1.Visible = True
Image3.Visible = False
Image2.Visible = False
Image4.Visible = False
Image5.Visible = False

Clicking on the reset button will make the image in the center visible again while other
images become invisible, this will give the false impression that the jet plane has move back
to the original position.

110

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

You can also issue the commands using a

textbox, this idea actually came from my son

Liew Xun (10 years old). His program is

shown below:

Private Sub Command1_Click()

If Text1.Text = "n" Then

Image1.Visible = False

Image3.Visible = True

Image2.Visible = False

Image4.Visible = False

Image5.Visible = False

ElseIf Text1.Text = "e" Then

Image1.Visible = False

Image4.Visible = True

Image2.Visible = False

Another simple way to simulate animation in
VB6 is by using the Left and Top properties of
an object. Image.Left give the distance of the
image in twips from the left border of the
screen, and Image.Top give the distance of
the image in twips from the top border of the
screen, where 1 twip is equivalent to 1/1440
inch. Using a statement such as Image.Left-
100 will move the image 100 twips to the
left, Image.Left+100 will move the image
100 twip away from the left(or 100 twips to
the right), Image.Top-100 will move the
image 100 twips to the top and
Image.Top+100 will move the image 100
twips away from the top border (or 100 twips
down).Below is a program that can move an
object up, down. left, and right every time
you click on a relevant command button.

111

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Image3.Visible = False

Image5.Visible = False

ElseIf Text1.Text = "w" Then

Image1.Visible = False

Image3.Visible = False

Image2.Visible = False

Image4.Visible = False

Image5.Visible = True

ElseIf Text1.Text = "s" Then

Image1.Visible = False

Image3.Visible = False

Image2.Visible = True

Image4.Visible = False

Image5.Visible = False

End If

End Sub

The Code

Private Sub Command1_Click()
Image1.Top = Image1.Top + 100
End Sub

Private Sub Command2_Click()
Image1.Top = Image1.Top - 100
End Sub

Private Sub Command3_Click()
Image1.Left = Image1.Left + 100
End Sub

Private Sub Command4_Click()
Image1.Left = Image1.Left - 100
End Sub

The fourth example let user magnify and
diminish an object by changing the height
and width properties of an object. It is quite
similar to the previous example. The
statements Image1.Height = Image1.Height
+ 100 and Image1.Width = Image1.Width +
100 will increase the height and the width of
an object by 100 twips each time a user click
on the relevant command button. On the
other hand, The statements Image1.Height
= Image1.Height - 100 and Image1.Width =
Image1.Width -100 will decrease the height
and the width of an object by 100 twips each
time a user click on the relevant command
button

The Code

Private Sub Command1_Click()
Image1.Height = Image1.Height + 100
Image1.Width = Image1.Width + 100
End Sub

Private Sub Command2_Click()

Image1.Height = Image1.Height - 100
Image1.Width = Image1.Width - 100

End Sub

You can try to combine both programs above
and make an object move and increases or
decreases in size each time a user click a

112

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

command button.

Lesson 31: Animation - Part II

31.1 Animation using a DragDrop Procedure

Drag and drop is a common windows application where you can drag and drop an object
such as a file into a folder or into a recycle bin. This capability can be easily programmed in
visual basic. In the following example, I am creating a simulation of dragging the objects
into a recycle bin, then drop a fire and burn them away.

In this program, I put 6 images on the form, one of them is a recycle bin, another is a
burning recycle bin , one more is the fire, and three more images. In addition, set the
property dragmode of all the images(including the fire) that are to be dragged to
1(Automatic) so that dragging is enabled, and set the visible property of burning recycle
bin to false at start-up. Besides, label the tag of fire as fire in its properties windows. If you
want to have better dragging effects, you need to load an appropriate icon under the
dragIcon properties for those images to be dragged, preferably the icon should be the same
as the image so that when you drag the image, it is like you are dragging the image along.

The essential event procedure in this program is as follows:

Private Sub Image4_DragDrop(Source As Control, X As Single, Y As Single)

Source.Visible = False
If Source.Tag = "Fire" Then
Image4.Picture = Image5.Picture
End If

End Sub

113

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Source refer to the image to be dragged. Using the code Source.Visible=False means it
will disappear after being dragged into the recycle bin(Image4).If the source is Fire, then
the recycle bin will changed into a burning recycle bin , which is accomplished by using the
code Image4.Picture = Image5.Picture, where Image 5 is the burning recycle bin.

For details of this program, please refer to my game and fun programming page or click this
link, Recycle Bin.

31.2 Animation for a complete motion

So far those examples of animation shown in lesson 23 only involve movement of static
images. In this lesson, you will be able to create true animation where an action finish in a
complete cycle, for example, a butterfly flapping its wings. In the following example, I used
eight picture frames of a butterfly which display a butterfly flapping its wing at different
stages.

You can actually copy the above images and use them in your program. You need to put all
the above images overlapping one another, make image1 visible while all other images
invisible at start-up. Next, insert a command button and label it as Animate. Click on the
command button and key in the statements that make the images appear and disappear
successively by using the properties image.visible=true and image.visible=false. I use If.....
Then and Elseif to control the program flow. When you run the program, you should be able
to get the following animation.

.

114

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The Interface

The Code

Private Sub Command1_Click()

If Image1.Visible = True Then
Image1.Visible = False
 Image2.Visible = True
ElseIf Image2.Visible = True Then
Image2.Visible = False
Image3.Visible = True
ElseIf Image3.Visible = True Then
Image3.Visible = False
Image4.Visible = True
ElseIf Image4.Visible = True Then
Image4.Visible = False
Image5.Visible = True
ElseIf Image5.Visible = True Then
Image5.Visible = False
Image6.Visible = True
ElseIf Image6.Visible = True Then
Image6.Visible = False
Image7.Visible = True
ElseIf Image7.Visible = True Then
Image7.Visible = False
Image8.Visible = True
ElseIf Image8.Visible = True Then
Image8.Visible = False
Image1.Visible = True
End If

End Sub

115

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

If you wish to create the effect of the butterfly flapping its wing and flying at the same time,
then you could use the Left and Top properties of an object, such as the one used in the
examples of lesson 23. Below is an example of a subroutine where the butterfly will flap its
wing and move up at the same time. You can also write subroutines that move the butterfly
to the left, to the right and to the bottom.

Sub move_up()

If Image1.Visible = True Then
Image1.Visible = False
Image2.Visible = True
Image2.Top = Image2.Top - 100

ElseIf Image2.Visible = True Then
Image2.Visible = False
Image3.Visible = True
Image3.Top = Image3.Top - 100

ElseIf Image3.Visible = True Then
Image3.Visible = False
Image4.Visible = True
Image4.Top = Image4.Top - 100
ElseIf Image4.Visible = True Then
Image4.Visible = False
Image5.Visible = True
Image5.Top = Image5.Top - 100
ElseIf Image5.Visible = True Then
Image5.Visible = False
Image6.Visible = True
Image6.Top = Image6.Top - 100

ElseIf Image6.Visible = True Then
Image6.Visible = False
Image7.Visible = True
Image7.Top = Image7.Top - 100

ElseIf Image7.Visible = True Then
Image7.Visible = False
Image8.Visible = True
Image8.Top = Image8.Top - 100
ElseIf Image8.Visible = True Then
Image8.Visible = False
Image1.Visible = True
Image1.Top = Image1.Top - 100
End If

End Sub

116

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 32: Animation - Part III

32.1 Animation using Timer

All preceding examples of animation that you have learn in lesson 23 and lesson 24 only
involve manual animation, which means you need to keep on clicking a certain command
button or pressing a key to make an object animate. In order to make it move
automatically, you need to use a timer. The first step in creating automatic animation is to
drag the timer from the toolbox into the form and set its interval to a certain value other
than 0. A value of 1 is 1 milliseconds which means a value of 1000 represents 1 second. The
value of the timer interval will determine the speed on an animation.

In the following example, I use a very simple technique to show animation by using the
properties Visible=False and Visible=true to show and hide two images alternately. When
you click on the program, you should see the following animation.

The Code

Private Sub
Timer1_Timer()

If Image1.Visible =
True Then
Image1.Visible = False
Image2.Visible = True
ElseIf Image2.Visible =
True Then
Image2.Visible = False
Image1.Visible = True
End If

End Sub

Next example shows a complete cycle of a motion such as the butterfly flapping its wing.
Previous examples show only manual animation while this example will display an automatic
animation once you start the program or by clicking a command button. Similar to the
example under lesson 24.2, you need to insert a group of eight images of a butterfly
flapping its wings at different stages. Next, insert a timer into the form and set the interval
to 10 or any value you like. Remember to make image1 visible while other images invisible
at start-up. Finally, insert a command button, rename its caption as Animate and key in the
following statements by double clicking on this button. Bear in mind that you should enter
the statements for hiding and showing the images under the timer1_timer subroutine
otherwise the animation would work. Clicking on the animate button make timer start
ticking and the event will run after every interval of 10 milliseconds or whatever interval
you have set at design time. In future lesson, I will show you how to adjust the interval at
runtime by using a slider bar or a scroll bar. When you run the program, you should see the
following animation:

117

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Private Sub
Form_Load()
Image1.Visible = True
x = 0
End Sub

Private Sub
Command1_Click()
Timer1.Enabled = True
End Sub

Private Sub
Timer1_Timer()
If Image1.Visible =
True Then
Image1.Visible = False
Image2.Visible = True

ElseIf Image2.Visible
= True Then
Image2.Visible = False
Image3.Visible = True

ElseIf
Image3.Visible =
True Then
Image3.Visible =
False
Image4.Visible =
True
ElseIf
Image4.Visible =
True Then
Image4.Visible =
False
Image5.Visible =
True
ElseIf
Image5.Visible =
True Then
Image5.Visible =
False
Image6.Visible =
True
ElseIf
Image6.Visible =
True Then
Image6.Visible =
False
Image7.Visible =
True
ElseIf
Image7.Visible =
True Then
Image7.Visible =
False
Image8.Visible =
True
ElseIf
Image8.Visible =
True Then
Image8.Visible =
False
Image1.Visible =
True
End If
End Sub

Please refer to my fun and games page for more advanced usage of the above animation ,
especially the

118

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 33: Internet and Web Applications
Part1-The web Browser

In order to create the web browser, you have to press Ctrl+T to open up the components

window and select Microsoft Internet Control. After you have selected the control, you

will see the control appear in the toolbox as a small globe. To insert the Microsoft Internet

Control into the form, just drag the globe into the form and a white rectangle will appears in

the form. You can resize this control as you wish. This control is given the default name

WebBrowser1.

To design the interface, you need to insert one combo box which will be used to display the

URLs. In addition, you need to insert a few images which will function as command buttons

for the user to navigate the Internet; they are the Go command, the Back command, the

Forward command, the Refresh command and the Home command. You can actually put

in the command buttons instead of the images, but using images will definitely improve the

look of the browser.

The procedures for all the commands are relatively easy to write. There are many methods,
events, and properties associated with the web browser but you need to know just a few of
them to come up with a functional Internet browser

119

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The method navigate is to go the website specified by its Uniform Resource Locator(URL).

The syntax is WebBrowser1.Navigate (“URL”). In this program, I want to load the

www.vbtutor.net web page at start-up, so I type in its URL.

Private Sub Form_Load()

WebBrowser1.Navigate ("http://www.vbtutor.net")

End Sub

 In order to show the URL in the combo box and also to display the page title at the form

caption after the page is completely downloaded, I use the following statements:

Private Sub

 WebBrowser1_DocumentComplete (ByVal pDisp As Object, URL As Variant)

120

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Combo1.Text = URL
Form1.Caption = WebBrowser1.LocationName
Combo1.AddItem URL

End Sub

The following procedure will tell the user to wait while the page is loading.

Private Sub

WebBrowser1_DownloadBegin ()
Combo1.Text = "Page loading, please wait"

End Sub

Lesson 34: Internet and Web Applications

Part 2-The FTP Program

FTP stands for File Transfer Protocol .The File Transfer Protocol is a system for transferring
files between two computers connected by the Internet .One of the computers is known as
the server and the other one is the client. The FTP program is very useful for website
management. The webmaster can update the web pages by uploading the local files to the
web server easily , at a much faster speed than the web browser. For normal PC users, the
FTP program can also be used to download files from many FTP sites that offer a lot of
useful stuffs such as free software, free games, product information, applications, tools,
utilities, drivers, fixes and many more things.

The FTP program usually comprises an interface that shows the directories of the local

computer and the remote server. Files can be transferred just by clicking the relevant

arrows. To log into the FTP site, we have to key in the user name and the password;

however, for public domains, we just need to type the word anonymous as the user name

and you can leave out the password. The FTP host name takes the form

ftp.servername.com, for example, the Microsoft FTP site’s host name is ftp.microsoft.com

.If you need to use a FTP program, you can purchase one or you can download a couple of

the programs that are available free of charge from the Internet. However, you can also

create your very own FTP program with Visual Basic. Visual Basic allows you to build a fully

functionally FTP program which may be just as good as the commercial FTP programs. The

engine behind it is the Microsoft Internet Transfer Control 6.0 in which you need to

insert it into your form before you can create the FTP program. The name of the Microsoft

Internet Transfer Control 6.0.is Inet and if you only put in one control, its name will be

Inet1.

121

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Inet1 comprises three important properties namely Inet1.URL that is used to identify the

FTP hostname, inet1.UserName that is used to accept the username and the

Inet1.Password that is used to accept the user’s passwords. The statements for the

program to read the hostname of the server, the username and the password entered into

Textbox1, Textbox2 and Textbox3 by the user are shown below:

Inet1.URL=Text1.Text

Inet1.UserName=Text2.Text

Inet1.Passoword=Text3.Text

After the user entered the above information, the program will attempt to connect to the

server using the following commands, where Execute is the method and DIR is the FTP

command that will read the list of files from the specified directory of the remote computer

and you need to use the getChunk method to actually retrieve the directory’s information.

 Inet1.Execute, "DIR

After connecting to the server, you can choose the file from the remote computer to
download by using the statement below:

Inet1.Execute, , "get" & remotefile & localfile

where remotefile is the file of the remote site and localfile is the file of the local system.

However, very often you need to provide the full path of the local file, which you can do that

by modifying the above syntax to the following syntax:

Inet1.Execute , , "get" & remotefile & localpath & remotefile

The above statements will ensure that the remote file will be downloaded to the location

specified by the localpath and the file downloaded will assume the same name as the

remote file. For example, if the remote file is readme.txt and the localpath is C:\temp , so

the downloaded file will be saved in C:\temp\readme.txt.

In order to monitor the status of the connection, you can use the StateChanged event that

is associated with Inet1 together with a set of the state constants that are listed in the

following table.

Constant Value Description

icHostResolvingHost 1 The control is looking up the IP address of the

122

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

specified host computer.

icHostResolved 2 The control successfully found the IP address of the

specified host computer.

icConnecting 3 The control is connecting to the host computer.

icConnected 4 The control successfully connected to the host

computer.

icRequesting 5 The control is sending a request to the host computer.

icRequestSent 6 The control successfully sent the request.

icReceivingResponse 7 The control is receiving a response from the host

computer.

icResponseReceived 8 The control successfully received a response from the

host computer.

icDisconnecting 9 The control is disconnecting from the host computer.

icDisconnected 10 The control successfully disconnected from the host

computer.

icError 11 An error occurred in communicating with the host

computer.

icResponseCompleted 12 The request has been completed and all data has

been received.

Under the StateChanged event, you use the Select Case…End Select statements to notify

the users regarding the various states of the connection. The procedure is shown below:

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResolvingHost

Label6.Caption = "Resolving Host"

Case icHostResolved

123

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Label6.Caption = "Host Resolved"

Case icConnecting

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data1 As String

Dim data2 As String

MsgBox "Download Completed"

End Select

End Sub

The FTP program that I have created contains a form and a dialog box. The dialog box can

be added by clicking on the Project item on the menu bar and then selecting the Add Form

item on the drop-down list. You can either choose a normal dialog box or a login dialog box.

The function of the dialog box is to accept the FTP address, the username and the password

and then to connect to the server. After successful login, the dialog box will be hidden and

the main form will be presented for the user to browse the remote directory and to choose

certain files to download.

The interface of the login dialog is shown on the right.

124

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The program for the login dialog is,

Option Explicit

Private Sub OKButton_Click()

Inet1.URL = Text1.Text

Inet1.UserName = Text2.Text

Inet1.Password = Text3.Text

Inet1.Execute , "DIR"

Form1.Show

Dialog.Hide

End Sub

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResolvingHost

Label6.Caption = "Resolving Host"

Case icHostResolved

Label6.Caption = "Host Resolved"

125

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Case icConnecting

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data As String

Dim data1 As String

MsgBox "Transfer Completed"

 Do

 data1 = Inet1.GetChunk(1024, icString)

 data = data & data1

 Loop While Len(data1) <> 0

 Form1.Text6.Text = data

End Select

End Sub

Private Sub CancelButton_Click()

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

End Sub

retrieve

The statement data1 = Inet1.GetChunk (1024, icString) is to use the getChunk method to
grab information of the remote directory and then display the files of the directory in
Textbox6.

After logging in, the main form will be presented as shown in Figure 30.3

126

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 35: Errors Handling in Visual Basic

35.1 Introduction

Error handling is an essential procedure in Visual Basic programming because it can help

make the program error-free. An error-free program can run smoothly and efficiently, and

the user does not have to face all sorts of problems such as program crash or system hang.

Errors often occur due to incorrect input from the user. For example, the user might make

the mistake of attempting to ask the computer to divide a number by zero which will

definitely cause system error. Another example is the user might enter a text (string) to a

box that is designed to handle only numeric values such as the weight of a person, the

computer will not be able to perform arithmetic calculation for text therefore will create an

error. These errors are known as synchronous errors.

Therefore a good programmer should be more alert to the parts of program that could

trigger errors and should write errors handling code to help the user in managing the errors.

127

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Writing errors handling code should be considered a good practice for Visual Basic

programmers, so do try to finish a program fast by omitting the errors handling code.

However, there should not be too many errors handling code in the program as it create

problems for the programmer to maintain and troubleshoot the program later.

35.2 Writing the Errors Handling Code

We shall now learn how to write errors handling code in Visual Basic. The syntax for errors

handling is

On Error GoTo program_label

where program_label is the section of code that is designed by the programmer to handle

the error committed by the user. Once an error is detected, the program will jump to the

program_label section for error handling.

Example 35.1: Division by Zero

Private Sub CmdCalculate_Click()

Dim firstNum, secondNum As Double

firstNum = Txt_FirstNumber.Text

secondNum = Txt_SecondNumber.Text

On Error GoTo error_handler

Lbl_Answer.Caption = firstNum / secondNum

Exit Sub 'To prevent error handling even the inputs are valid

error_handler:

Lbl_Answer.Caption = "Error"

Lbl_ErrorMsg.Visible = True

Lbl_ErrorMsg.Caption = " You attempt to divide a number by zero!Try again!"

End Sub

Private Sub Txt_FirstNumber_GotFocus()

Lbl_ErrorMsg.Visible = False

128

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Private Sub Txt_SecondNumber_GotFocus()

Lbl_ErrorMsg.Visible = False

End Sub

The Output Window

Explanation:

In this example, you design the interface as above. Name the first textbox as

Txt_FirstNumber and the second textbox as Txt_SecondNumber. Insert one command

button as label it as Calculate. Insert one label and name it as Lbl_Answer to display the

answers. If the user enter 0 in the second textbox as shown above, the program will jump

to the label error_handler, and the procedure that is executed. It will show an error in the

Txt_Answer label and an error message in the Lbl_ErrorMsg label.

129

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Notice that Exit sub after the division. It is important because it can prevent the program to

execute the error_handler code even though the user does not enter zero in the second

textbox.

Lastly, after the error message appeared, the user will click on the textboxes again. When

this occur, the error message will disappea both from the answer label and error message

label. This is achieved by using he event procedure GotFocu, as shown in the code.

Example 35.2: Nested Error Handling Procedure

By referring to Example 28.1, we need to consider other errors probably will be made by the

user, such as entering non-numeric inputs like letters. Therefore, we need to write error

handling code for this error too. It should be put in the first place as soon as the user input

something in the textboxes. And the error handler label error_handler1 for this errror

should be put after the error_handler2 label. This means the second error handling

procedure is nested within the first error handling procedure. Notice that you have to put

an Exit Sub for the second error handling procedure to prevent to execute the first error

handling procedure again. The code is as follow:

Private Sub CmdCalculate_Click()

Dim firstNum, secondNum As Double

On Error GoTo error_handler1

firstNum = Txt_FirstNumber.Text

secondNum = Txt_SecondNumber.Text

On Error GoTo error_handler2

Lbl_Answer.Caption = firstNum / secondNum

Exit Sub 'To prevent errror handling even the inputs are valid

error_handler2:

Lbl_Answer.Caption = "Error"

Lbl_ErrorMsg.Visible = True

Lbl_ErrorMsg.Caption = " You attempt to divide a number by zero!Try again!"

Exit Sub

error_handler1:

130

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lbl_Answer.Caption = "Error"

Lbl_ErrorMsg.Visible = True

Lbl_ErrorMsg.Caption = " You are not entering a number! Try again!"

End Sub

Private Sub Txt_FirstNumber_GotFocus()

Lbl_ErrorMsg.Visible = False

End Sub

Private Sub Txt_SecondNumber_GotFocus()

Lbl_ErrorMsg.Visible = False

End Sub

The Output window

131

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 36: Compiling and Distributing
Your Programs

36.1 Compiling your Visual Basic Program

Once your have completed a VB program, you can compile the program to run as a

standalone windows application, without having to launch the Visual Basic IDE. However,

before you compile your program, you have to debug your program to make sure it is errors

free. Once the program is compiled into an EXE file (executable file), you can not debug it

anymore. If you wish to do so, you have to correct the errors and recompile it.

To start compiling your program, click on the menu File and select Make Project1.exe, as
show in Figure 36.1. When you click on Make Project1.exe , the Make Project dialog box will
appear, as shown in Figure 36.2. In this dialog box, you can select the project you wish to
compile. In this example, the project I chose to compile is reversi. The option button in this
dialog box let you customize the program you are going to compile. For example, you can
enter the title of the program , the program's version and your company name. Clicking on
the compile tab will let you decide the kind of code you wish to compile. The default option
is native code and it is the best option because it normally runs faster. It requires fewer files
to run, particular the VB DLL files. Once you have done that, you can click the OK button to
compile the program. Now you program can run as a standalone application. You can start
your program without launching the Visual Basic IDE.

Figure 36.1

132

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 36.2

133

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 Figure 36.3

134

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

36.2 Distributing Your Programs

Figure 36.4

After successfully created a VB program, you might want to market your product, either
online or offline. This means that you need to create a package that can be distributed to
your potential customers. The package created can be distributed using CD ROM, diskette or
the Internet. The package will allow the user to install the program to install in the
computer with the standard setup routine.

To create the distributable package, you can use the Package and Development Wizard that
came with Visual Basic 6. The main purpose of this wizard is to create a setup program that
can be used to install the application. Off course, it also does many other jobs like compiling
your application and compresses the files for easy distribution.

When you start the Package and Development Wizard, you will be presented with the
following dialog box:

135

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

First of all, you need to select the project you want to package. Here I have selected the
starwar.vbp project. Next, you need to select one of the three options. Here, I suggest you
select the first option to let the wizard create the installation package for you to distribute
it using CD ROM or the Internet.

Once you click the package option, you will see the following dialog box where you are
asked to choose a packaging script:

136

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

After you click next, you will see the following dialog box where you will be asked to choose
a packaging type. Normally we choose the Standard Setup Package.

137

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

The next dialog box that shows up will ask you where to store the package, as shown

below:

The next dialog box will show you the files that will be included in the package.

When you click the Finish button, the package will be created and ready for distribution.
Here is the packaged files for the starwar program for download at

Setup.exe

SETUP.LST

starwar5.CAB

You must download all the three files into a folder and then run the setup program.

Lesson 37: Creating Menus for Your

Applications

Menu bar is the standard feature of most windows applications. The main purpose of the

menus is for easy navigation and control of an application. Some of the most common menu

items are File, Edit, View, Tools, Help and more. Each item on the main menu bar also

provide a list of options or in the form of a pull-down menu. When you create a Visual Basic

6 program, you need not include as many menu items as a full fledge Windows application

138

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

such as Microsoft Words. What you need is to include those menu items that can improve

the ease of using your program by the user, and not to confuse the user with unnecessary

items. Adding menu bar is relatively easy to accomplish in Visual Basic. There are two ways

to add menus to your application, one way is to use the Visual Basic's Application Wizard

and the other way is to use the menu editor.

37.1 Adding Menu Bar Using Visual Basic's Application Wizard

The easiest way to add menu bar to your application is by using Visual Basic's Application

Wizard. This wizard allows the user to insert fully customized standard windows menus into

his or her application. To start using Visual Basic's Application Wizard, you click on the

Application Wizard icon at the Visual Basic new project dialog box, as shown below:

Figure 37.1: New Project Window

When you click on the VB Application wizard, the introduction dialog box will appear, as

shown in Figure 37.1. As you are not loading any default setting, just click on the Next

button. After clicking the Next button, the interface type dialog box will be displayed, as

shown in Figure 37.3. There are three choices of interface for your project, as we currently

not creating a Multiple Document Interface (MDI), we choose Single Document Interface

(SDI). You can also type the project name in the textbox below, here I am using

MyFirstMenu. After clicking the Next button, you will be presented with a list of menus and

submenus that you would like to add them to your application. Check to select a menu item

139

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

and uncheck to unselect a menu item. Let say we choose all the menus and click next, then

you will get an interface will File, Edit, View and Help menus. such as that shown in Figure

37.5

Figure 37.2
Figure 37.3

140

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 37.4

Figure 37.5

When you click on any menu item, a list of drop-down submenu items will be displayed. For
example, if you click on the File menu, the list of submenu items such as New, Open, Save,
Save As and more will be displayed, as shown in Figure 37.6

141

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 37.6

Clicking on any of the dropped down menu item will show the code associated with it, and
this is where you can modify the code to suit your programming needs. For example,
clicking on the item Open will reveal the following code:

142

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 37.7

Now, I will show you how to modify the code in order to open a graphic file and display it in
an image box. For this program, you have to insert a Image box into the form. Next add the
following lines so that the user can open graphic files of different formats.

.Filter = "Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg Files(*.jpg)|*.jpg|GIF
Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All Files(*.*)|*.*".

Then, you need to load the image into the Image box with the following code:

Image1.Picture = LoadPicture(.FileName)

Also set the Stretch property of the Image box to true so that the image loaded can resize
by itself. Please note that each menu item is a special control, so it has a name too. The
name for the menu File in this example is mnuFileOpen.

The full code is as follows:

Private Sub mnuFileOpen_Click()
Dim sFile As String

With dlgCommonDialog
.DialogTitle = "Open"
.CancelError = False
'ToDo: set the flags and attributes of the common dialog control
.Filter = "Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg Files(*.jpg)|*.jpg|GIF
Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All Files(*.*)|*.*"
.ShowOpen

143

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Image1.Picture = LoadPicture(.FileName)

If Len(.FileName) = 0 Then
Exit Sub
End If
sFile = .FileName
End With
'ToDo: add code to process the opened file

End Sub

When you run the program and click on the File menu and then the submenu Open, the
following Open dialog box will be displayed, where you can look for graphic files of various
formats to load it into the image box.

Figure 37.8

For example, selecting the jpeg file will allow you to choose the images of jpeg format.

144

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 37.9

Clicking on the particular picture will load it into the image box, as shown below.

145

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

37.2: Adding Menu Bar Using Menu Editor

To start adding menu items to your application, open an existing project or start a new
project, then click on Tools in the menu bar of the Visual Basic IDE and select Menu Editor.
When you click on the Menu Editor, the Menu Editor dialog will appear. In the Menu Editor
dialog , key in the first item File in the caption text box. You can use the ampersand (&)
sign in front of F so that F will be underlined when it appears in the menu, and F will
become the hot key to initiate the action under this item by pressing the Alt key and the
letter F. After typing &File in the Caption text box, move to the name textbox to enter the
name for this menu item, you can type in mnuFile here. Now, click the Next button and the
menu item &File will move into the empty space below, as shown in the following diagram:

146

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 37.11

You can then add in other menu items on the menu bar by following the same procedure, as
shown in the diagram below:

147

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

when you click Ok, the menu items will be shown on the menu bar of the form.

Figure 37.13

Now, you may proceed to add the sub menus. In the Menu Editor, click on the Insert button
between File and Exit and then click the right arrow key, and the dotted line will appear.
This shows the second level of the menu, or the submenu. Now key in the caption and the
name. Repeat the same procedure to add other submenu items. Here, we are adding New,
Open, Save, Save As and Exit.

Figure 37.14

148

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Now click the OK button and go back to your form. You can see the dropped down
submenus when you click on the item File, as shown.

Figure 37.15

Finally, you can enter the code by clicking on any of the submenu items. You can enter code
such as that shown in section 37.1

Lesson 38: Keyboard Handling

In previous lessons, we have only learned how to trigger events or control program flow by

clicking the mouse. In this chapter, you will learn how to use the keyboard to trigger an

event using the keyboard beside using the mouse. When the user press a key on the

keyboard, it will trigger an event or a series of events. These events are called the keyboard

events. In Visual Basic, the three basic event procedure to handle the key events are

KeyPress, Keydown and KeyUp

38.1 ASCII

The key event occurs when the user presses any key that corresponds to a certain
alphanumeric value or an action such as Enter, spacing, backspace or so on. Each of those
values or actions are represented by a set of codes known as the ASCII . ASCII stands for
American Standard Code for Information Interchange. ASCII stands for American Standard
Code for Information Interchange. Computers can only understand numbers, so an ASCII
code is the numerical representation of a character such as 'a' or '@' or an action of some
sort. ASCII was developed a long time ago and now the non-printing characters are rarely
used for their original purpose.In order to write code for the Key events , we need to know
the ASCII and the corresponding values. Some of the commond ASCII values are shown in
Table 38.1.

149

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

ASCII Chr ASCII Chr ASCII Chr

8 Backspace 61 = 98 b

13
Carriage Return

or Enter key
62 > 99 c

32 Space 63 ? 100 d

33 ! 64 @ 101 e

34 " 65 A 102 f

35 # 66 B 103 g

36 $ 67 C 104 h

37 % 68 D 105 i

38 & 69 E 106 j

39 ' 70 F 107 k

40 (71 G 108 l

41) 72 H 109 m

42 * 73 I 110 n

43 + 74 J 111 o

44 , 75 K 112 p

45 - 76 L 113 q

46 . 77 M 114 r

47 / 78 N 115 s

48 0 79 O 116 t

49 1 80 P 117 u

50 2 81 Q 118 v

51 3 82 R 119 w

52 4 83 S 120 x

53 5 84 T 121 y

54 6 85 U 122 z

55 7 86 V 123 {

56 8 87 W 124 |

57 9 88 X 125 }

58 : 89 Y 126 ~

150

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

59 ; 90 Z 127 DEL

60 < 97 a

Table 38.1: ASCII Values

For more detail table, please refer to http://www.asciitable.com/

38.2 Common Key Events Constants.

In Visual Basic 6, it employs a set of constants that correspond to the ASCII values. We can

use the constants instead of the ASCII. The following tablle shows the constants and the

corresponding ASCII values.

Event

Constant
ASCII Chr Event Constant ASCII Chr

vbKey0 48 0 vbKeyR 82 R

vbKey1 49 1 vbKeyS 83 S

vbKey2 50 2 vbKeyT 84 T

vbKey3 51 3 vbKeyU 85 U

vbKey4 52 4 vbKeyV 86 V

vbKey5 53 5 vbKeyW 87 W

vbKey6 54 6 vbKeyX 88 X

vbKey7 55 7 vbKeyY 89 Y

vbKey8 56 8 vbKeyZ 90 Z

vbKey9 57 9 vbKeyDecimal 110 Decima point

vbKeyA 65 A vbkeyBack 8 Backspace key

vbKeyB 66 B vbKeyTab 9 Tab key

vbKeyC 67 C vbkeyReturn 13
Return

key(Enter key)

vbKeyD 68 D vbKeyShift 16 Shift key

vbKeyE 69 E vbKeyControl 17 Ctrl key

vbKeyF 70 F vbKeyCapital 20 Caps Lock key

vbKeyG 71 G vbKeyEscape 27 Esc key

151

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

vbKeyH 72 H vbKeySpace 32 Space bar

vbKeyI 73 I vbKeyInsert 45 Insert key

vbKeyJ 74 J vbKeyDelete 46 Delete key

vbKeyK 75 K

vbKeyL 76 L

vbKeyM 77 M

vbKeyN 78 N

vbKeyO 79 O

vbKeyP 80 P

vbKeyQ 81 Q

38.3 Writing code for the key events

 We can write code for the three key events i.e. keyPress, KeyDown and KeyUp.

Example 38.1

Private Sub Form_KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then ' 13 is the ASCII value for the Enter key

Print "You have pressed the Enter key"

Else

Print "You have pressed other key"

End If

End Sub

In this example, the program can detect the pressing of Enter key and the keys other than

the Enter key.

Example 38.2

152

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

If you wish to detect and display the key pressed by the user, simply type the following

code:

Private Sub Form_KeyPress(KeyAscii As Integer)

Print Chr(KeyAscii)

End Sub

The function Chr will convert the ASCII values to the corresponding characters as shown in

the ASCII table.

Example 38.3

Private Sub Form_KeyPress(KeyAscii As Integer)

For i = 65 To 90

Print Chr(KeyAscii)

Next

End Sub

In this example, we use the For ...Next loop to display the alphabet A to Z by pressing any

key on the keyboard.

Example 38.4

Private Sub Form_KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then

For i = 97 To 122

Print Chr(i)

Next

End If

End Sub

153

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Lesson 39: Using the Printer-Part 1

39.1 Printing using the Printer object

In previous lessons, we have only written programs that send output to the screen and not

the printer. In this lesson, we will learn how to send an output to the printer and get it

printed. Sending output to the printer is a simple task in Visual Basic, it involves the use of

the Printer object and the print method. The standard code of sending an output to the

printer and get it printed out is as follows:

 Private Sub Form_Load()

 Printer.Print "Welcome to Visual Basic"

 End Sub

However, the code above only send the output to the printer without actually printing it. It

will only print the output when you terminate the application. It can a very inconvenience if

you need to close the program every time you want to print the output. To solve this little

problem, we need to add the newpage or EndDoc method. So, add one extra line to the

above code as follows:

 Private Sub Form_Load()

 Printer.Print "Welcome to Visual Basic"

 Printer.EndDoc

 End Sub

Beside printing messages in string form, you can actually print out other varibales including

numeric values. Below is an example:

Private Sub Command1_Click()

Dim x, y As String, z As Variant

x = InputBox("Enter the first Number")

y = InputBox("Enter the second Number")

z = Val(x) + Val(y)

154

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Printer.Print "The answer is" & z

Printer.EndDoc

End Sub

If x=3 and y=4, the printing output is "The answer is 7'

You can also use loops to send output to the printer. In the follow example, I used the

For......Next loop to print out the multiplication table.

Private Sub Command1_Click()

Dim i, j As Integer

For i = 2 To 9

For j = 2 To 9

Printer.Print i & "x" & j & "=" & i * j,

Next j

Printer.Print Chr(13)

Next i

Printer.EndDoc

End Sub

The command Printer.Print Chr(13) is equivalent to pressing the Enter and print the output

on the next line. The output is as follows:

2x2=4 2x3=6 2x4=8 2x5=10 2x6=12 2x7=14 2x8=16 2x9=18

3x2=6 3x3=9 3x4=12 3x5=15 3x6=18 3x7=21 3x8=24 3x9=27

4x2=8 4x3=12 4x4=16 4x5=20 4x6=24 4x7=28 4x8=32 4x9=36

5x2=10 5x3=15 5x4=20 5x5=25 5x6=30 5x7=35 5x8=40 5x9=45

6x2=12 6x3=18 6x4=24 6x5=30 6x6=36 6x7=42 6x8=48 6x9=54

7x2=14 7x3=21 7x4=28 7x5=35 7x6=42 7x7=49 7x8=56 7x9=63

8x2=16 8x3=24 8x4=32 8x5=40 8x6=48 8x7=56 8x8=64 8x9=72

9x2=18 9x3=27 9x4=36 9x5=45 9x6=54 9x7=63 9x8=72 9x9=81

155

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Now you might want to know whether it is possible to print the content of text file created

in Visual Basic. The answer is a big "YES". Let me use Example 17.3.2 of Lesson 17. We

shall add a command button to the form and rename it as cmdPrint and change the label to

Print, and then double click the button to insert the follow code:

Private Sub CmdPrint_Click()

Printer.Print Text1.Text

Printer.EndDoc

End Sub

By clicking the Print button you should be able to print the content of the text box.

The full code of the program as follows:

Dim linetext As String

Private Sub CmdPrint_Click()

Printer.Print Text1.Text

Printer.EndDoc

End Sub

Private Sub open_Click()

CommonDialog1.Filter = "Text files{*.txt)|*.txt"

CommonDialog1.ShowOpen

If CommonDialog1.FileName <> "" Then

Open CommonDialog1.FileName For Input As #1

Do

Input #1, linetext

Text1.Text = Text1.Text & linetext

Loop Until EOF(1)

End If

Close #1

156

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

End Sub

Private Sub save_Click()

CommonDialog1.Filter = "Text files{*.txt)|*.txt"

CommonDialog1.ShowSave

If CommonDialog1.FileName <> "" Then

Open CommonDialog1.FileName For Output As #1

Print #1, Text1.Text

Close #1

End If

End Sub

39.2 Formatting the Output using Printer Object properties

You can format your output before sending it to the printer using a number of font related

Printer object properties. Some of these properties are listed below:

FontBold, FontItalic, FontSize, FontName and FontUnderline

The code to format your printed output is illustrated in the example below:

Private Sub CmdPrint_Click()

Printer.FontName="Verdana"

Printer.FontSize=16

Printer.FontBold=True

Pinter.FontItalic=True

Printer.FontUndeline=True

 Printer.Print Text1.Text

 Printer.EndDoc

157

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

 End Sub

Creating Reports in Visual Basic 6

40.1 A brief introduction to reporting tool in Visual
basic 6

You have learned how to build a database in Visual Basic 6 in previous chapters, however you
have not learned how to display the saved data in a report. Reports are important and useful in
many respects because they provide useful and meaningful information concerning a set of data.
In this chapter, we will show you how to create a report in Visual Basic 6.

In previous versions of Visual Basic 6, there is no primary reporting . Previous versions of Visual
basic 6 uses Crystal Reports tool, a software from Seagate. Fortunately, Microsoft has integrated
a good report writer into Visual Basic 6, so you no longer need to use Crystal Report.

40.2 Steps in building your report in Visual Basic 6

Visual Basic 6 provides you with a data report designer to create your report, it is somewhat
similar to data report designer in Microsoft Access. The data report designer has its own set of
controls which allow you to customize your report seamlessly. The steps in creating the report in
VB6 are listed below:

Step 1: Adding Data Report

Start Visual Basic as a Standard EXE project. From the Project menu in the VBE, select Add Data
Report in the dropdown menu. Now, you will be presented with the data report environment, as
shown in Figure 40.1. The data report environment contains 6 controls, they are RptTextBox,
RptLine, RptFunction, RptLabel, RptImage and RptShape.

You can customize your report here by adding a title to the page header using the report label
RptLabel. Simply drag and draw the RptLabel control on the data report designer window and use
the Caption property to change the text that should be displayed. You can also add graphics to
the report using the RptImage control.

158

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.1: The Data Report Environment

Step 2: Connecting the report to database using Data Environment Designer

Click the Project menu, then select Data Environment. from the drop-down menu. The default data
environment will appear, as shown in figure 40.2

159

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.2: Data Environment

Now, to connect to the database, right-click connection1 and select Microsoft Jet 3.51 OLE DB
Provider (as we are using MS Access database) from the Data Link Properties dialog (as shown in
Figure 40.3), then click next.

160

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.3

Now, you need to connect to the database by selecting a database file from your hard disk. For
demonstration purpose, we will use the database BIBLIO.MDB that comes with Visual Basic, as
shown in Figure 40.4. The path to this database file is C:\Program Files\Microsoft Visual
Studio\VB98\BIBLIO.MDB. This path varies from computers to computers, depending on where
you install the file. After selecting the file, you need to test the connection by clicking the Test
Connection button at the right bottom of the Data Link Properties dialog. If the connection is
successful, a message that says 'Test Connection Succeeded' will appear. Click the OK button on
the message box to return to the data environment. Now you can rename connection1 to any
name you like by right-clicking it. For example, you can change it to MyConnection. You may also
change the name of DataEnvironment1 to MyDataEnvironment using the Properties window.

161

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.4

Step 3: Retrieving Information from the Database

In order to use the database in your report, you need to create query to retrieve the information
from the database. Here , we will use SQL command to create the query. First of all, right click on
MyConnection to add a command to the data environment. The default command is Command1,
you can rename it as MyCommand, as shown in Figure 40.5.

162

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.5: MyCommand

In order to use SQL command, right-click MyCommand and you can see its properties dialog. At
the General tab, select SQL statement and key in the following SQL statement:

SELECT Au_ID, Author
FROM Authors ORDER BY Author

This command is to select all the fields from the Authors table in the Biblio.Mdb database. The
command ORDER BY Author is to arrange the list in ascending order according to the Authors'
Names.

Now, you need to customize a few properties of your data report so that it can connect to the

database. The first property to set is the DataSource, set it to MyDataEnvironment. Next, you need
to set the DataMember property to MyCommand,as shown in Figure 40.6

163

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.6: Properties of

To add data to your report, you need to drag the fields from MyCommand in MyDataEnvironment
into MyDataReport, as shown in Figure 40.7.Visual Basic 6 will automatically draw a RptTextBox,
along with a RptLabel control for each field on the report. You can customize the look of the labels
as well as the TextBoxes from the properties window of MyDataReport.

164

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.7

The Final step is to set MydataReport as the Startup form from the Project menu, then run the
program. You will see your report as shown in Figure 40.8. You can print out your report.

165

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

Figure 40.8: The Final Report.

Congratulation! You have finish reading all the 39 lessons, and now you can
consider yourself a VB programmer. You should consider buying the TEXTBOOK for
this tutorial for easy referencing in the future. Buy this book by clicking the picture
below:

166

Compiled by Tendy 03/04/2010 /08:13:05pm VB6.0/001/

